Link:

传送门

A:

由于每个颜色只染色一次就确定了所有要染色的区间

要求染色的次数其实就是求区间最多嵌套多少层,如果有区间相交则无解

以上操作明显可以将左端点排序后用栈来维护

#include <bits/stdc++.h>

using namespace std;
#define X first
#define Y second
#define pb push_back
typedef double db;
typedef long long ll;
typedef pair<int,int> P;
const int MAXN=2e5+;
struct node{int x,d,col;};
node dat[MAXN];int st[MAXN],top;
int n,x,l[MAXN],r[MAXN],cur,res,tot;
bool cmp(node a,node b){return a.x==b.x?a.d<b.d:a.x<b.x;} int main()
{
scanf("%d",&n);
memset(l,0x3f,sizeof(l));
for(int i=;i<=n;i++)
{
scanf("%d",&x);
l[x]=min(l[x],i),r[x]=max(r[x],i);
if(!x) dat[++tot]=node{i,,};
}
for(int i=;i<=n;i++)
if(r[i]) dat[++tot]=node{l[i],,i},dat[++tot]=node{r[i],,i};
sort(dat+,dat+tot+,cmp); for(int i=;i<=tot;i++)
{//注意0代表没有颜色要特殊处理
if(!dat[i].col)
{
if(top) return puts("-1"),;
else continue;
}
if(!dat[i].d)
st[++top]=dat[i].col,cur++;
else
{
if(dat[i].col!=st[top])
return puts("-1"),;
top--;cur--;
}
res=max(res,cur);
}
printf("%d",res);
return ;
}

Problem A

注意零代表没有颜色要特殊处理……

B:

涉及字符串匹配想到哈希,结果一开始写成了$O(n^3*log(n))$

由于最外层的字符串长度的可行性是单调的,二分后可优化为$O(n^2*log(n)^2)$

但上述的复杂度是可以继续优化的

使用$two pointers$来利用单调性,每次可行就移动左端点,否则移动右端点

这样可以只检验$2*n$个字符串,复杂度降到了$O(2*n^2*log(n))$

同时该题也可以每次暴力构造$Trie$树来进行匹配,复杂度为$O(n^3)$

#include <bits/stdc++.h>

using namespace std;
#define X first
#define RG register
#define Y second
#define pb push_back
typedef double db;
typedef long long ll;
typedef pair<int,int> P;
typedef unsigned long long ull;
const int MAXN=1e3+,base=;
ull hs[MAXN][MAXN],pre[MAXN];
int n,m,f;char s[MAXN];
map<ull,int> mp; bool check(int x)
{
for(int i=x;i<=m;i++)
{
mp.clear();f=;
for(RG int k=;k<=n;k++)
mp[hs[k][i]-hs[k][i-x]*pre[x]]=;
for(RG int k=n+;k<=*n;k++)
if(mp[hs[k][i]-hs[k][i-x]*pre[x]]){f=;break;}
if(f) return true;
}
return false;
} int main()
{
scanf("%d%d",&n,&m);
pre[]=;
for(RG int i=;i<=m;i++) pre[i]=pre[i-]*base;
for(RG int i=;i<=*n;i++)
{
scanf("%s",s+);
for(RG int j=;j<=m;j++)
hs[i][j]=hs[i][j-]*base+(s[j]-'A');
} int l=,r=m;
while(l<=r)
{
int mid=(l+r)>>;
if(check(mid)) r=mid-;
else l=mid+;
}
printf("%d",l);
return ;
}

Problem B

$two pointers$对比二分的优越之处就在于其能更及时的纠错

如果当前长度不行就直接加长,而二分则要将该长度的所有字符串都检验过再进行调整

[USACO 2017 Open Gold] Tutorial的更多相关文章

  1. [USACO 2017 Dec Gold] Tutorial

    Link: USACO 2017 Dec Gold 传送门 A: 为了保证复杂度明显是从终结点往回退 结果一开始全在想优化建边$dfs$……其实可以不用建边直接$multiset$找可行边跑$bfs$ ...

  2. [USACO 2017 Feb Gold] Tutorial

    Link: 传送门 A: 分层图最短路(其实就是最短路转移时多记录一维的数据 #include <bits/stdc++.h> using namespace std; #define X ...

  3. [USACO 2017 Jan Gold] Tutorial

    Link: 传送门 A: 按值大小插入后用树状数组统计两边个数 #include <bits/stdc++.h> using namespace std; #define X first ...

  4. [USACO 2018 Feb Gold] Tutorial

    Link: USACO 2018 Feb Gold 传送门 A: $dp[i][j][k]$表示前$i$个中有$j$个0且末位为$k$的最优解 状态数$O(n^3)$ #include <bit ...

  5. [USACO 2018 Jan Gold] Tutorial

    Link: USACO 2018 Jan Gold 传送门 A: 对于不同的$k$,发现限制就是小于$k$的边不能走 那么此时的答案就是由大于等于$k$的边形成的图中$v$所在的连通块除去$v$的大小 ...

  6. USACO 2017 February Gold

    那天打cf前无聊练手 T1.Why Did the Cow Cross the Road 题目大意:N*N的矩阵,从左上角走到右下角,走一步消耗T,每走3步消耗当前所在位置上的权值,求最小消耗 思路: ...

  7. USACO 2017 FEB Gold visitfj 最短路

    题意 有一幅n*n的方格图,n <= 100,每个点上有一个值.从(1,1)出发,走到(n,n),只能走四联通.每走一步花费t,每走三步需要花费走完三步后到达格子的值.求最小花费的值. 拆点,d ...

  8. [USACO 2016 Dec Gold] Tutorial

    Link: 传送门 A: 贪心从小到大插入,用并查集维护连通性 #include <bits/stdc++.h> using namespace std; #define X first ...

  9. [USACO 2018 Open Gold] Tutorial

    Link: 传送门 A: 对于每一条分割线,设本不应在其左侧的个数为$x$ 重点要发现每次一来一回的操作恰好会将一对分别应在左/右侧的一个数从右/左移过去 这样就转直接用树状数组求出最大的$x$即可 ...

随机推荐

  1. OPENId是什么, OAUTH 是什么

    what is openId open id is said to be a protocol which uses url as username, so if a website supports ...

  2. js_面向对象设计和行为委托设计模式

    最近换了新工作,面试过程中有多多少少的问题没有给的出答案,为自己的技术短板而促急. javascript中万物皆对象(键:值构成的一种数据),暂且不讨论这个句话的对与错,可以想象对象在javascri ...

  3. End to End Sequence Labeling via Bidirectional LSTM-CNNs-CRF论文小结

    本篇论文是卡内基梅隆大学语言技术研究所2016年  arXiv:1603.01354v5 [cs.LG] 29 May 2016 今天先理解一下这个是什么意思:        找到的相关理解:arXi ...

  4. windows+nexus+maven环境搭建(转)

    windows nexus环境搭建 1.下载nexus 版本为 nexus-2.11.4-01-bundle 下载地址 这里写链接内容 2.将下载好的文件放到D盘进行解压 3.解压后目录结构 nexu ...

  5. Python3 嵌套函数

    嵌套函数: 函数体内用def定义函数 注意:函数体中调用其他函数不算嵌套函数,只能是函数的调用 简单的嵌套函数: 输出结果:

  6. 使用Redirector插件解决googleapis公共库加载的问题【转】

    转自:http://www.cnblogs.com/kari/p/5860371.html 最近访问一些面向国外的网站总是会出现ajax.googleaips.com无法加载的情况.以下为加载stac ...

  7. device tree 負值 property 寫法

    倘若你要設定 負值的property, 可能需要括符才會 build 過. 正確 decidegc = <(-10)>; 錯誤 decidegc = <-10>;

  8. python多进程处理数据

    当我们处理大规模数据如ImageNet的时候,单进程显得很吃力耗时,且不能充分利用多核CPU计算机的资源.因此需要使用多进程对数据进行并行处理,然后将结果合并即可.以下给出的是多进程处理的demo代码 ...

  9. [ 总结 ] Linux系统启动流程

    Linux系统启动过程分析: 按下电源 --> BIOS自检 --> 系统引导(lilo/grub) --> 启动内核 --> 初始化系统 --> 用户登录 1. BIO ...

  10. C#多线程编程之:集合类中Synchronized方法与SyncRoot属性原理分析

    我们知道,在.net的一些集合类型中,譬如Hashtable和ArrayList,都有Synchronized静态方法和SyncRoot属性,他们之间有联系吗?我怎么才能用好他们呢? 以Hashtab ...