在分页功能开发时,我们很习惯用LIMIT O,N的方法来取数据。这种方法在遇到超大分页偏移量时是会把MySQL搞死的ooo...

  通常,我们会采用ORDER BY LIMIT start, offset 的方式来进行分页查询。例如下面这个SQL:

SELECT * FROM `t1` WHERE ftype=1 ORDER BY id DESC LIMIT 100, 10;

  或者像下面这个不带任何条件的分页SQL:

SELECT * FROM `t1` ORDER BY id DESC LIMIT 100, 10;

  一般而言,分页SQL的 耗时 随着 start 值的增加而急剧增加,我们来看下面这2个不同起始值的分页SQL执行耗时:

yejr@imysql.com> SELECT * FROM `t1` WHERE ftype= 

ORDER BY id DESC LIMIT , ;

…

 rows in set (0.05 sec)

yejr@imysql.com> SELECT * FROM `t1` WHERE ftype= 

   ORDER BY id DESC LIMIT , ;

…

 rows in set (2.39 sec)

  可以看到,随着分页数量的增加,SQL查询耗时也有数十倍增加,显然不科学。

  今天我们就来分析下,如何能优化这个分页方案。

  一般滴,想要优化分页的终极方案就是:没有分页,哈哈哈~~~,不要说我讲废话,确实如此,可以把分页算法交给Solr、Lucene、Sphinx等第三方解决方案,尤其是遇到有模糊搜索的需求时,没必要让MySQL来做它不擅长的事情。

  当然了,有小伙伴说,用第三方太麻烦了,我们就想用MySQL来做这个分页,咋办呢?莫急,且待我们慢慢分析。

  先看下表DDL、数据量、查询SQL的执行计划等信息:

yejr@imysql.com> SHOW CREATE TABLE `t1`;

CREATE TABLE `t1` (

 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,

...

 `ftype` tinyint(3) unsigned NOT NULL,

...

 PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

yejr@imysql.com> select count(*) from t1;

+----------+

| count(*) |

+----------+

| 994584 |

+----------+

yejr@imysql.com> EXPLAIN SELECT * FROM `t1` WHERE ftype=1 

   ORDER BY id DESC LIMIT 500, 10\G

*************************** 1. row ***************************

 id: 1

 select_type: SIMPLE

 table: t1

 type: index

possible_keys: NULL

 key: PRIMARY

 key_len: 4

 ref: NULL

rows: 510

 Extra: Using where

yejr@imysql.com> EXPLAIN SELECT * FROM `t1` WHERE ftype=1

   ORDER BY id DESC LIMIT 935500, 10\G

*************************** 1. row ***************************

 id: 1

 select_type: SIMPLE

 table: t1

 type: index

possible_keys: NULL

 key: PRIMARY

 key_len: 4

 ref: NULL

rows: 935510

 Extra: Using where

  可以看到,虽然是通过主键索引扫描数据的,但第二个SQL需要扫描的记录数太大了,而且需要先扫描约935510条记录,然后再根据排序结果取10条记录,这肯定是非常慢了。

 针对这种情况,我们的优化思路就比较清晰了,有两点:

  1. 尽可能从索引中直接获取数据,避免或减少再次扫描行数据的次数(也就是我们通常所说的避免回表);

  2. 尽可能减少扫描的记录数,也就是先确定起始的范围,再往后取N条记录。

 根据上面这两种优化思路,有相应的SQL改写方法:子查询、表连接,像下面这样的:

#方法一

#采用子查询的方式优化,在子查询里先从索引获取到最大id,然后倒序排,再取10行结果集

#注意这里采用了两次倒序排,因此在取LIMIT的start值时,比原来的值加了10,即935510,否则结果将和原来的不一致

yejr@imysql.com> EXPLAIN SELECT * FROM (SELECT * FROM `t1` WHERE 

  id > ( SELECT id FROM `t1` WHERE ftype=1 

  ORDER BY id DESC LIMIT 935510, 1) LIMIT 10) t ORDER BY id DESC\G

*************************** 1. row ***************************

 id: 1

 select_type: PRIMARY

 table: <derived2>

 type: ALL

possible_keys: NULL

 key: NULL

 key_len: NULL

 ref: NULL

 rows: 10

 Extra: Using filesort

*************************** 2. row ***************************

 id: 2

 select_type: DERIVED

 table: t1

 type: ALL

possible_keys: PRIMARY

 key: NULL

 key_len: NULL

 ref: NULL

 rows: 973192

 Extra: Using where

*************************** 3. row ***************************

 id: 3

 select_type: SUBQUERY

 table: t1

 type: index

possible_keys: NULL

 key: PRIMARY

 key_len: 4

 ref: NULL

 rows: 935511

 Extra: Using where

#方法二

#采用INNER JOIN优化,JOIN子句里也优先从索引获取ID列表,然后直接关联查询获得最终结果,这里不需要加10

yejr@imysql.com> EXPLAIN SELECT * FROM `t1` INNER JOIN 

  ( SELECT id FROM `t1` WHERE ftype=1 

  ORDER BY id DESC LIMIT 935500,10) t2 USING (id)\G

*************************** 1. row ***************************

 id: 1

 select_type: PRIMARY

 table: <derived2>

 type: ALL

possible_keys: NULL

 key: NULL

 key_len: NULL

 ref: NULL

 rows: 935510

 Extra: NULL

*************************** 2. row ***************************

 id: 1

 select_type: PRIMARY

 table: t1

 type: eq_ref

possible_keys: PRIMARY

 key: PRIMARY

 key_len: 4

 ref: t2.id

 rows: 1

 Extra: NULL

*************************** 3. row ***************************

 id: 2

 select_type: DERIVED

 table: t1

 type: index

possible_keys: NULL

 key: PRIMARY

 key_len: 4

 ref: NULL

 rows: 973192

 Extra: Using where

然后来对比下这2个优化后的执行时间/代价:

#1、子查询优化:从profiling的结果来看,相比原来耗时减少 28.2%

yejr@imysql.com> SELECT * FROM (SELECT * FROM `t1` WHERE 

  id > ( SELECT id FROM `t1` WHERE ftype=1 

  ORDER BY id DESC LIMIT 935510, 1) LIMIT 10) T ORDER BY id DESC;

...

rows in set (1.86 sec)

#2、INNER JOIN优化:从profiling的结果来看,相比原来耗时减少30.8%

yejr@imysql.com> SELECT * FROM `t1` INNER JOIN 

  ( SELECT id FROM `t1` WHERE ftype=1 

  ORDER BY id DESC LIMIT 935500,10) t2 USING (id);

...

10 rows in set (1.83 sec)

再来看一个不带过滤条件的分页SQL对比:

#1、原始SQL

yejr@imysql.com> EXPLAIN SELECT * FROM `t1` ORDER BY id DESC LIMIT 935500, 10\G

*************************** 1. row ***************************

           id: 1

  select_type: SIMPLE

        table: t1

         type: index

possible_keys: NULL

          key: PRIMARY

      key_len: 4

          ref: NULL

         rows: 935510

        Extra: NULL

yejr@imysql.com> SELECT * FROM `t1` ORDER BY id DESC LIMIT 935500, 10;

...

10 rows in set (2.22 sec)

#2、采用子查询优化,相比原来耗时减少10.6%

yejr@imysql.com> EXPLAIN SELECT * FROM (SELECT * FROM `t1` WHERE 

  id > ( SELECT id FROM `t1` ORDER BY id DESC 

  LIMIT 935510, 1) LIMIT 10) t ORDER BY id DESC;

*************************** 1. row ***************************

           id: 1

  select_type: PRIMARY

        table: <derived2>

         type: ALL

possible_keys: NULL

          key: NULL

      key_len: NULL

          ref: NULL

         rows: 10

        Extra: Using filesort

*************************** 2. row ***************************

           id: 2

  select_type: DERIVED

        table: t1

         type: ALL

possible_keys: PRIMARY

          key: NULL

      key_len: NULL

          ref: NULL

         rows: 973192

        Extra: Using where

*************************** 3. row ***************************

           id: 3

  select_type: SUBQUERY

        table: t1

         type: index

possible_keys: NULL

          key: PRIMARY

      key_len: 4

          ref: NULL

         rows: 935511

        Extra: Using index

yejr@imysql.com> SELECT * FROM (SELECT * FROM `t1` WHERE 

  id > ( SELECT id FROM `t1` ORDER BY id DESC 

  LIMIT 935510, 1) LIMIT 10) t ORDER BY id DESC;

…

10 rows in set (2.01 sec)

#3、采用INNER JOIN优化,相比原来耗时减少30.2%

yejr@imysql.com> EXPLAIN SELECT * FROM `t1` INNER JOIN 

  ( SELECT id FROM `t1`ORDER BY id DESC 

  LIMIT 935500,10) t2 USING (id)\G

*************************** 1. row ***************************

           id: 1

  select_type: PRIMARY

        table: 

         type: ALL

possible_keys: NULL

          key: NULL

      key_len: NULL

          ref: NULL

         rows: 935510

        Extra: NULL

*************************** 2. row ***************************

           id: 1

  select_type: PRIMARY

        table: t1

         type: eq_ref

possible_keys: PRIMARY

          key: PRIMARY

      key_len: 4

          ref: t1.id

         rows: 1

        Extra: NULL

*************************** 3. row ***************************

           id: 2

  select_type: DERIVED

        table: t1

         type: index

possible_keys: NULL

          key: PRIMARY

      key_len: 4

          ref: NULL

         rows: 973192

        Extra: Using index

yejr@imysql.com> SELECT * FROM `t1` INNER JOIN 

  ( SELECT id FROM `t1`ORDER BY id DESC 

  LIMIT 935500,10) t2 USING (id);

…

10 rows in set (1.70 sec)

  至此,我们看到采用子查询或者INNER JOIN进行优化后,都有大幅度的提升,这个方法也同样适用于较小的分页。

说下结论,子查询和INNER JOIN分页优化方法的提升效率是:

  • 带WHERE条件的分页分别能提高查询效率:24.9%、156.5%;
  • 不带WHERE条件的分页分别提高查询效率:554.5%、11.7%

单从提升比例说,还是挺可观的。而且这两种优化方法基本上可适用于各种分页模式,强烈建议一开始就改成这种SQL写法习惯。

我们来看下各种场景相应的提升比例是多少:

  大分页,带WHERE 大分页,不带WHERE 大分页平均提升比例 小分页,带WHERE 小分页,不带WHERE 总体平均提升比例
子查询优化 28.20% 10.60% 19.40% 24.90% 554.40% 154.53%
INNER JOIN优化 30.80% 30.20% 30.50% 156.50% 11.70% 57.30%

这样看就很明显了,尤其是针对大分页的情况,因此我们优先推荐使用INNER JOIN方式优化分页算法。

 上述每次测试都重启mysqld实例,并且加了SQL_NO_CACHE,以保证每次都是直接数据文件或索引文件中读取。如果数据经过预热后,查询效率会一定程度提升,但上述相应的效率提升比例还是基本一致的。

  from: http://m.blog.csdn.net/article/details?id=70039403

抛弃【 LIMIT O,N 】,换种方法查询分页的更多相关文章

  1. MySql、SqlServer、Oracle 三种数据库查询分页方式

    SQL Server关于分页 SQL 的资料许多,有的使用存储过程,有的使用游标.本人不喜欢使用游标,我觉得它耗资.效率低:使用存储过程是个不错的选择,因为存储过程是颠末预编译的,执行效率高,也更灵活 ...

  2. 50种方法优化SQL Server数据库查询

    查询速度慢的原因很多,常见如下几种: 1.没有索引或者没有用到索引(这是查询慢最常见的问题,是程序设计的缺陷) 2.I/O吞吐量小,形成了瓶颈效应. 3.没有创建计算列导致查询不优化. 4.内存不足 ...

  3. SQL Server查询优化方法(查询速度慢的原因很多,常见如下几种) .

    今天看到一位博友的文章,觉得不错,转载一下,希望对大家有帮助,更多文章,请访问:http://blog.haoitsoft.com 1.没有索引或者没有用到索引(这是查询慢最常见的问题,是程序设计的缺 ...

  4. 转载 50种方法优化SQL Server数据库查询

    原文地址 http://www.cnblogs.com/zhycyq/articles/2636748.html 50种方法优化SQL Server数据库查询 查询速度慢的原因很多,常见如下几种: 1 ...

  5. MS数据库优化查询最常见的几种方法

    1.没有索引或者没有用到索引(这是查询慢最常见的问题,是程序设计的缺陷) 2.I/O吞吐量小,形成了瓶颈效应. 3.没有创建计算列导致查询不优化. 4.内存不足 5.网络速度慢 6.查询出的数据量过大 ...

  6. MySQL、SQLServer2000(及SQLServer2005)和ORCALE三种数据库实现分页查询的方法

    在这里主要讲解一下MySQL.SQLServer2000(及SQLServer2005)和ORCALE三种数据库实现分页查询的方法. 可能会有人说这些网上都有,但我的主要目的是把这些知识通过我实际的应 ...

  7. MS SQL Server查询优化方法 查询速度慢的原因很多,常见如下几种

    1.没有索引或者没有用到索引(这是查询慢最常见的问题,是程序设计的缺陷) 2.I/O吞吐量小,形成了瓶颈效应. 3.没有创建计算列导致查询不优化. 4.内存不足 5.网络速度慢 6.查询出的数据量过大 ...

  8. EntityFramework嵌套查询的五种方法

    这样的双where的语句应该怎么写呢: var test=MyList.Where(a => a.Flows.Where(b => b.CurrentUser == “”) 下面我就说说这 ...

  9. 服务器文档下载zip格式 SQL Server SQL分页查询 C#过滤html标签 EF 延时加载与死锁 在JS方法中返回多个值的三种方法(转载) IEnumerable,ICollection,IList接口问题 不吹不擂,你想要的Python面试都在这里了【315+道题】 基于mvc三层架构和ajax技术实现最简单的文件上传 事件管理

    服务器文档下载zip格式   刚好这次项目中遇到了这个东西,就来弄一下,挺简单的,但是前台调用的时候弄错了,浪费了大半天的时间,本人也是菜鸟一枚.开始吧.(MVC的) @using Rattan.Co ...

随机推荐

  1. PHP5.3魔术方法 __invoke

    这个魔幻方法被调用的时机是: 当一个对象当做函数调用的时候, 如果对象定义了__invoke魔幻方法则这个函数会被调用, class Callme { public function __invoke ...

  2. Educational Codeforces Round 6 D. Professor GukiZ and Two Arrays 二分

    D. Professor GukiZ and Two Arrays 题目连接: http://www.codeforces.com/contest/620/problem/D Description ...

  3. Web API使用记录系列(四)OAuth授权与身份校验

    呼,开干第四篇,基于OWIN搭建OAuth认证授权服务器与接口身份校验. OAuth包含授权码模式.密码模式.客户端模式和简化模式,这里我们文章记录的是密码模式和客户端模式. 目录 引用安装 授权处理 ...

  4. 微软工具ILMerge

    释义 ILMerge是一个可用于将多个.NET程序集合并为单个程序集的实用程序. ILMerge接收一组输入程序集并将它们合并到一个目标程序集中.输入程序集列表中的第一个程序集是主程序集. 当主组件是 ...

  5. 【js UUID】JS生成UUID 使用

    * 生成UUID * @returns */ function UUID() { var s = []; var hexDigits = "0123456789abcdef"; f ...

  6. Kubernetes下的应用监控解决方案

    所谓应用监控,更多的是基于java jvm的监控,因为公司运行的中间件大部分都是基于tomcat,Springboot,SpringCloud,当然也必须支持WebLogic.在Kubernetes现 ...

  7. LaTeX 相对于 Word 有什么优势?

    sjhstone ,本科EE在读 vczh等 276 人赞同 [Word公式进阶请往下翻]有人还写过论文,参见PLOS ONE: An Efficiency Comparison of Documen ...

  8. JAVA HDFS API Client 连接HA

    如果Hadoop开启HA,那么用Java Client连接Hive的时候,需要指定一些额外的参数 package cn.itacst.hadoop.hdfs; import java.io.FileI ...

  9. android 启动socket 失败:socket(af_inet sock_stream 0) 返回-1

    Android 启动socket 失败:socket(af_inet sock_stream 0) 返回-1 原因权限问题, 应该添加如下权限: <uses-permission android ...

  10. 对Emlog 6.0 Beta的完整代码审计过程

    Emlog 6.0 beta版本,这可能是最后一篇关于PHP语言CMS的代码审计文章,此次将详细记录完整的审计过程. 文章基本上完整记录小东的对此CMS审计过程,或许显得繁琐,但代码审计的过程就是这样 ...