51Nod 1003 阶乘后面0的数量 | 思维

#include "bits/stdc++.h"
using namespace std;
#define LL long long
#define INF 0x3f3f3f3f3f
#define PI acos(-1)
#define N 510
LL arr[N];
int main()
{
int n,k;
while(~scanf("%d",&n)){
int sum=;
while(n>){
sum+=n/;
n/=;
}
printf("%d\n",sum);
}
return ;
}
51Nod 1003 阶乘后面0的数量 | 思维的更多相关文章
- 51Nod 1003 阶乘后面0的数量(数学,思维题)
1003 阶乘后面0的数量 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题 n的阶乘后面有多少个0? 6的阶乘 = 1*2*3*4*5*6 = 720 ...
- pku 1401 Factorial 算数基本定理 && 51nod 1003 阶乘后面0的数量
链接:http://poj.org/problem?id=1401 题意:计算N!的末尾0的个数 思路:算数基本定理 有0,分解为2*5,寻找2*5的对数,2的因子个数大于5,转化为寻找因子5的个数. ...
- 51nod 1003 阶乘后面0的数量
每一个 2 与一个 5 相乘,结果就增加一个零. 所以求 n! 后面的连续零的个数,其实就是求其中相乘的数含有因子每对因子 2 与 5 的个数. 又因为从1到某个数,所含 2 的个数比 5 多,所以 ...
- 51Nod:1003 阶乘后面0的数量
1003 阶乘后面0的数量 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题 收藏 关注 n的阶乘后面有多少个0? 6的阶乘 = 1*2*3*4*5*6 = 72 ...
- 1001 数组中和等于K的数对 1002 数塔取数问题 1003 阶乘后面0的数量 1004 n^n的末位数字 1009 数字1的数量
1001 数组中和等于K的数对 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题 给出一个整数K和一个无序数组A,A的元素为N个互不相同的整数,找出数组A中所有和等于K ...
- 51 Nod 阶乘后面0的数量
1003 阶乘后面0的数量 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题 收藏 关注 n的阶乘后面有多少个0? 6的阶乘 = 1*2*3*4*5*6 = 72 ...
- (数学 尾0的个数) 51nod1003 阶乘后面0的数量
n的阶乘后面有多少个0? 6的阶乘 = 1*2*3*4*5*6 = 720,720后面有1个0. 收起 输入 一个数N(1 <= N <= 10^9) 输出 输出0的数量 输入样例 5 ...
- 51nod_1003 阶乘后面0的数量(求N!中5的个数,数论)
题意: n的阶乘后面有多少个0? 6的阶乘 = 1*2*3*4*5*6 = 720,720后面有1个0. Input 一个数N(1 <= N <= 10^9) OutPut 输出0的数 ...
- 51Nod 1003 1004 1009
1003 阶乘后面0的数量 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题 n的阶乘后面有多少个0? 6的阶乘 = 1*2*3*4*5*6 = 720,720后面有1 ...
随机推荐
- Python中的Numeric
整型Integer 在Python2.X中,Integer有两种类型,一种是32bit的普通类型,一种是精度无限制的long类型,在数字后面标识l或者L来标识long类型,并且,当32bit发生ove ...
- ifream爱恨情缘
开幕场景 iframe.html <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "h ...
- 自定义View 和 ViewGroup
一. 自定义View介绍 自定义View时, 继承View基类, 并实现其中的一些方法. (1) ~ (2) 方法与构造相关 (3) ~ (5) 方法与组件大小位置相关 (6) ~ (9) 方法与触摸 ...
- 软工1816 · Alpha冲刺(2/10)
团队信息 队名:爸爸饿了 组长博客:here 作业博客:here 组员情况 组员1(组长):王彬 过去两天完成了哪些任务 与前后端敲定接口设计的细节 重新理清业务逻辑,对项目最初的设想进行一定修正 跟 ...
- 关于GenericJDBCException的问题
在spring和hibernate整合的初步阶段,还没有编辑hibernate.cfg.xml这个文件,只有一个beans.xml文件.此时遇到了一个bug. Exception in thread ...
- TCP系列25—重传—15、DSACK虚假重传探测
一.DSACK介绍 RFC2883通过指定使用SACK来指示接收端的重复包(duplicate packet)扩展了RFC2018对SACK选项的定义(SACK选项的介绍和示例参考前面内容).RFC2 ...
- Personal summary 个人总结
一.请回望开学时的第一次作业,你对于软件工程课程的想象 对比开篇博客你对课程目标和期待,"希望通过实践锻炼,增强计算机专业的能力和就业竞争力",对比目前的所学所练所得,在哪些方面达 ...
- 数论的欧拉定理证明 & 欧拉函数公式(转载)
欧拉函数 :欧拉函数是数论中很重要的一个函数,欧拉函数是指:对于一个正整数 n ,小于 n 且和 n 互质的正整数(包括 1)的个数,记作 φ(n) . 完全余数集合:定义小于 n 且和 n 互质的数 ...
- web 性能测试与报告
web性能测试大家第一都会想到:loadrunner.ab.siege.http_load等工具.但是这些工具生成的测试报告都不是我想要的. 这里给大家推荐一个sitespeed,使用简单,生成非常详 ...
- Linux命令之查看cpu个数_核数_内存总数
http://blog.csdn.net/cgwcgw_/article/details/10000053 cpu个数 cat /proc/cpuinfo | grep "physical ...