题目中的严格二字,表示的意思是不允许≥或者是≤的情况出现,只允许>的情况以及<的情况

经典问题是NOIP合唱队形,在这个题目中,既求了最长上升子序列,也求了最长下降子序列

其最终的结果由两个子序列的结果共同得来

我们给出实现方法:

//最长上升子序列

    for(int i=1;i<=n;i++)
    for(int j=i-1;j>=0;j--)
    if(a[j]<a[i])
      f1[i]=max(f1[i],f1[j]+1);

//最长下降子序列 

    for(int i=n;i>=1;i--)
    for(int j=i+1;j<=n+1;j++)
    if(a[j]<a[i])
      f2[i]=max(f2[i],f2[j]+1);

以最长上升子序列为例,其转移方程为:f(i)=max(f(i),f(j)+1),并且当a[i]>a[j]时进行转移

在实现的时候,一定要控制好下标,以及边界处理,以上代码的边界处理是没有问题的

下面给出合唱队形这道题的代码:

 #include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=;
int n;
int ans;
int a[maxn];
int f1[maxn],f2[maxn];
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
for(int i=;i<=n;i++)
for(int j=i-;j>=;j--)
if(a[j]<a[i])
f1[i]=max(f1[i],f1[j]+);
for(int i=n;i>=;i--)
for(int j=i+;j<=n+;j++)
if(a[j]<a[i])
f2[i]=max(f2[i],f2[j]+);
for(int i=;i<=n;i++)
ans=max(ans,f1[i]+f2[i]);
ans=n-ans+;
printf("%d\n",ans);
return ;
}

动态规划:LIS的更多相关文章

  1. 非 动态规划---LIS

    题目:一个序列有N个数:A[1],A[2],…,A[N],求出最长非降子序列的长度.(见动态规划---LIS) /* 题目:一个序列有N个数:A[1],A[2],…,A[N],求出最长非降子序列的长度 ...

  2. 2021.12.06 P2501 [HAOI2006]数字序列(动态规划+LIS)

    2021.12.06 P2501 [HAOI2006]数字序列(动态规划+LIS) https://www.luogu.com.cn/problem/P2501 题意: 现在我们有一个长度为 n 的整 ...

  3. BZOJ_1609_[Usaco2008_Feb]_Eating_Together_麻烦的聚餐_(动态规划,LIS)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1609 给出一串由1,2,3组成的数,求最少需要改动多少个数,使其成为不降或不升序列. 分析 法 ...

  4. 动态规划-LIS最长上升子序列

    优化链接 [https://blog.csdn.net/George__Yu/article/details/75896330] #include<stdio.h> #include< ...

  5. HDU - 1160 FatMouse's Speed 动态规划LIS,路径还原与nlogn优化

    HDU - 1160 给一些老鼠的体重和速度 要求对老鼠进行重排列,并找出一个最长的子序列,体重严格递增,速度严格递减 并输出一种方案 原题等于定义一个偏序关系 $(a,b)<(c.d)$ 当且 ...

  6. HDU-1051/POJ-1065 Wooden sticks 木棍子(动态规划 LIS 线型动归)

    嘤嘤嘤,实习半年多的小蒟蒻的第一篇博客(题解) 英文的: There is a pile of n wooden sticks. The length and weight of each stick ...

  7. POJ_1631_Bridging_Signals_(动态规划,LIS)

    描述 http://poj.org/problem?id=1631 铁路左右相连,要求去掉一些边,使得剩下的边不交叉,求剩余边数的最大值. Bridging signals Time Limit: 1 ...

  8. POJ_1065_Wooden_Sticks_(动态规划,LIS+鸽笼原理)

    描述 http://poj.org/problem?id=1065 木棍有重量 w 和长度 l 两种属性,要使 l 和 w 同时单调不降,否则切割机器就要停一次,问最少停多少次(开始时停一次). Wo ...

  9. 动态规划-LIS

    https://vjudge.net/contest/297216?tdsourcetag=s_pctim_aiomsg#problem/E #include<bits/stdc++.h> ...

  10. P1091 合唱队形题解(洛谷,动态规划LIS,单调队列)

    先上题目 P1091 合唱队形(点击打开题目) 题目解读: 1.由T1​<...<Ti​和Ti​>Ti+1​>…>TK​可以看出这题涉及最长上升子序列和最长下降子序列 2 ...

随机推荐

  1. SGU 520 Fire in the Country(博弈+搜索)

    Description This summer's heat wave and drought unleashed devastating wildfires all across the Earth ...

  2. nodejs笔记--与Redis的交互篇(六)

    原文地址:http://www.cnblogs.com/zhongweiv/p/node_redis.html 安装前准备 win64: Install python: http://www.pyth ...

  3. es6从零学习(三):Class的基本用法

    es6从零学习(三):Class的基本用法 一:定义一个类 //定义类 class Point { constructor(x, y) { this.x = x; this.y = y; } toSt ...

  4. Alpha阶段中间产物

    空天猎功能说明书:https://git.coding.net/liusx0303/Plane.git 空天猎代码控制:https://coding.net/u/MR__Chen/p/SkyHunte ...

  5. PHPCMS v9的表单向导实现问答咨询功能的方法

    本文主要介绍了在phpcms v9的表单向导里实现问答咨询功能的方法 phpcms v9内容管理系统本身是没有问答模块的,只有表单向导,但表单向导有很大的局限性,通过表单向导,我们只能查看用户提交的信 ...

  6. html+css基础 - 个人备忘录

    //======================html部分===================// 表现内容<meta http-equiv="Content-Type" ...

  7. 计算器软件实现系列(五)策略模式+asp.net

    一 策略模式代码的编写 using System; using System.Collections.Generic; using System.Linq; using System.Web; /// ...

  8. idea导出jar包

    在File->Project Structure->Artifacts,如图:  然后: 点击Apply,OK. 跳出去就可以看到多了META-INF文件夹: 然后build项目,就可以看 ...

  9. 数据存储到MySQL并返回新插入的id值

    当对数据库进行插入数据后,有时会需要刚插入的数据的id值,以作他用,整理如下: conn = pymysql.connect(, user=DB_USER, passwd=DB_PASSWORD, d ...

  10. bpf程序

    bpf都是怎么起作用的? 记得bpf之前是绑定在bpf bpf作用在哪里呀?