对于每一个表(table)或者分区, Hive可以进一步组织成桶,也就是说桶是更为细粒度的数据范围划分。Hive也是针对某一列进行桶的组织。Hive采用对列值哈希,然后除以桶的个数求余的方式决定该条记录存放在哪个桶当中。

把表(或者分区)组织成桶(Bucket)有两个理由:

(1)获得更高的查询处理效率。桶为表加上了额外的结构,Hive 在处理有些查询时能利用这个结构。具体而言,连接两个在(包含连接列的)相同列上划分了桶的表,可以使用 Map 端连接 (Map-side join)高效的实现。比如JOIN操作。对于JOIN操作两个表有一个相同的列,如果对这两个表都进行了桶操作。那么将保存相同列值的桶进行JOIN操作就可以,可以大大较少JOIN的数据量。

(2)使取样(sampling)更高效。在处理大规模数据集时,在开发和修改查询的阶段,如果能在数据集的一小部分数据上试运行查询,会带来很多方便。

按我的理解,所谓Hive中的分桶,实际就是指的MapReduce中的分区。根据Reduce的数量,分成不同个数的文件。

我们以一个demo进行说明。

创建分桶表

drop table stu_buck;
create table stu_buck(id int, name string, score double)
clustered by(id) into 4 buckets
row format delimited
fields terminated by ',';

设置变量,设置分桶为true, 设置reduce数量是分桶的数量个数

set hive.enforce.bucketing = true;
set mapreduce.job.reduces=4;

我们从另外一个表student查询数据放到该表中,student中的表数据如下:

开始往创建的分桶表插入数据(插入数据需要是已分桶, 且排序的)

可以使用distribute by(id) sort by(id asc)

排序和分桶的字段相同的时候也可以使用Cluster by(字段)

注意使用cluster by 就等同于分桶+排序(sort)

可以尝试以下几种方式:

insert into table stu_buck
select id,name,score from student distribute by(id) sort by(id asc); insert overwrite table stu_buck
select id,name,score from student distribute by(id) sort by(id asc); insert overwrite table stu_buck
select id,name,score from student cluster by(id); insert overwrite table stu_buck
select id,name,score from student cluster by(id) sort by(id); 报错,cluster 和 sort 不能共存

效果:

我们来查看以下文件的内容:

dfs -cat /user/hive/warehouse/test.db/stu_buck/000000_0;

dfs -cat /user/hive/warehouse/test.db/stu_buck/000001_0;

dfs -cat /user/hive/warehouse/test.db/stu_buck/000002_0;

dfs -cat /user/hive/warehouse/test.db/stu_buck/000003_0;

注:1、order by 会对输入做全局排序,因此只有一个reducer,会导致当输入规模较大时,需要较长的计算时间。
2、sort by不是全局排序,其在数据进入reducer前完成排序。因此,如果用sort by进行排序,并且设置mapred.reduce.tasks>1,则sort by只保证每个reducer的输出有序,不保证全局有序。
3、distribute by(字段)根据指定的字段将数据分到不同的reducer,且分发算法是hash散列。
4、Cluster by(字段) 除了具有Distribute by的功能外,还会对该字段进行排序。
5、创建分桶表并不意味着load进数据也是分桶的,你必须先分好桶,然后再放到表中。

因此,如果分桶和sort字段是同一个时,此时,cluster by = distribute by + sort by

分桶表的作用:最大的作用是用来提高join操作的效率;但是两者的分桶数要相同或者成倍数。

为什么可以提高join操作的效率呢?因为按照MapReduce的分区算法,是Id的HashCode值模上ReduceTaskNumbers,所以一个ID会分到同一个桶中,这样合并就不用整个表遍历求笛卡尔积了,对应的桶合并就可以了。

Hive学习笔记——Hive中的分桶的更多相关文章

  1. hive学习笔记之五:分桶

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  2. hive学习笔记之一:基本数据类型

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  3. hive学习笔记之三:内部表和外部表

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  4. hive学习笔记之四:分区表

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  5. hive学习笔记之六:HiveQL基础

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  6. hive学习笔记之七:内置函数

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  7. hive学习笔记之九:基础UDF

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  8. hive学习笔记-表操作

    Hive数据类型 基本数据类型 tinyint,smallint,int,biging,float,double,decimal,char,varchar,string,binary,boolean, ...

  9. hive学习笔记之十:用户自定义聚合函数(UDAF)

    欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 本篇概览 本文是<hive学习笔记>的第十 ...

随机推荐

  1. IIS漏洞过滤

    IIS漏洞报告会提示网站HEAD包含Server版本信息导致版本泄漏,看起来不是大问题的漏洞却被分到中危或高危的行列中, 因为攻击者可能使用被披露信息获取特定版本发现的安全漏洞以及利用程序. 下面提供 ...

  2. vc6下unicode支持

    最近在研究一个串口程序,要启用unicode支持,发现还挺麻烦的. VC6.0设定UNICODE编译环境 VC++ 6.0支持Unicode编程,但默认的是ANSI,所以开发人员只需要稍微改变一下编写 ...

  3. mac 下安装 plink

    1.  直接 brew install putty. 其自带 plink工具.

  4. C# socket 编程入门

    http://www.cnblogs.com/chenxizhang/archive/2011/09/10/2172994.html

  5. ant Select 联动

    1.代码 /** * 选择监区 组件 */ import React, { PureComponent } from 'react'; import PropTypes from 'prop-type ...

  6. struts 防止重复提交表单

    <?xml version="1.0" encoding="UTF-8" ?> <!DOCTYPE struts PUBLIC     &qu ...

  7. 基于layui的框架模版,采用模块化设计,接口分离,组件化思想

    代码地址如下:http://www.demodashi.com/demo/13362.html 1. 准备工作 编辑器vscode,需要安装liveServer插件在前端开启静态服务器 或者使用hbu ...

  8. c# webbrowser 清除cookie和缓存

    由于缓存文件是特殊的文件,以及WebBrowser与IE版本有关因此删除缓存绝对不可能用一些IO函数就总可以解决的因此我的这些函数在IO操作的基础上,又针对环境进行相应的清理. static clas ...

  9. ajax 异步 通信 小例子 servlet与 jsp异步 post方法

    post请求 url后面加参数 接收不到的,必须 放到send("use"=user)形式 还要加上 xhr.setRequestHeader("Content-Type ...

  10. Linux 下Tomcat的启动、关闭、杀死进程

    Linux下Tomcat的启动.关闭.杀死进程 打开终端 cd /java/tomcat #执行 bin/startup.sh #启动tomcat bin/shutdown.sh #停止tomcat ...