传送门

Description

给定一个1*n的地图,在里面玩2048,每次可以合并相邻两个(数值范围1-40),问最大能合出多少。注意合并后的数值并非加倍而是+1,例如2与2合并后的数值为3。

Input

输入的第一行是一个数字n,代表地图大小。然后n行,i+1行代表第i个数的大小

Output

输出仅一行,为最大能合并出的大小

Hint

1<=n<=248,不保证所有的数字能被合成完

Sample Input


Sample Output


solution

典型的区间DP。首先考虑区间dp最普通状态定义:用f[i][j]表示区间[i,j]所能合成的最大答案,转移为f[i][j]=max{f[i][k]+1|当且仅当f[i][k]==f[k+1][j]}。输出f[1][n],这么做本题存在缺陷:在转移时,无法保证区间f[i][j]的最大值在所需要的左(右)端点处被取到。例如:观察线段

此时f[1][3]=5,f[4][6]=5,但是无法进行合并,因为[1,3]等于5的位置在左侧,与[4,6]并不直接相连。

考虑增加维度,当前转移为n^3,增加维度时间爆炸,否定

考虑限制状态,记f[i][j]为区间[i,j]恰好能够合成的最大值,每次转移维护ans。转移同上。可行

  对于区间[i,j]的最大值一定可以由其两个子区间的最优解转移得到。

  证明:手推可能hack的情况,发现显然。

Code

#include<cstdio>
#define maxn 250 inline void qr(int &x) {
char ch=getchar();int f=;
while(ch>''||ch<'') {
if(ch=='-') f=-;
ch=getchar();
}
while(ch>=''&&ch<='') x=(x<<)+(x<<)+(ch^),ch=getchar();
x*=f;
return;
} inline int max(int a,int b) {return a>b?a:b;}
inline int min(int a,int b) {return a<b?a:b;} inline void swap(int &a,int &b) {
int c=a;a=b;b=c;return;
} int n,num[maxn],frog[maxn][maxn],ans; int main() {
qr(n);
for(int i=;i<=n;++i) {
qr(num[i]);frog[i][i]=num[i];
}
for(int i=;i<n;++i) {
for(int j=;j<=n;++j) {
int r=j+i;if(r>n) break;
for(int k=j;k<r;++k) {
if(!(frog[j][k]^frog[k+][r])) frog[j][r]=max(frog[j][r],frog[j][k]+),ans=max(ans,frog[j][r]);
}
}
}
printf("%d\n",ans);
return ;
}

summary

  对于DP时发现状态不够严谨导致转移困难,可以考虑对状态加以限制。在每次转移时更新答案。

  另外据说这题有大常数O(n)算法。可惜我不会

End on 2018/6/3

【区间DP】【lgP3146】248的更多相关文章

  1. 又一道区间DP的题 -- P3146 [USACO16OPEN]248

    https://www.luogu.org/problemnew/show/P3146 一道区间dp的题,以区间长度为阶段; 但由于要处理相邻的问题,就变得有点麻烦; 最开始想了一个我知道有漏洞的方程 ...

  2. 【bzoj4580】[Usaco2016 Open]248 区间dp

    题目描述 Bessie likes downloading games to play on her cell phone, even though she does find the small t ...

  3. 「USACO16OPEN」「LuoguP3146」248(区间dp

    题目描述 Bessie likes downloading games to play on her cell phone, even though she doesfind the small to ...

  4. 「区间DP」「洛谷PP3146 」[USACO16OPEN]248 G

    [USACO16OPEN]248 G 题目: 题目描述 Bessie likes downloading games to play on her cell phone, even though sh ...

  5. 一道另类的区间dp题 -- P3147 [USACO16OPEN]262144

    https://www.luogu.org/problemnew/show/P3147 此题与上一题完全一样,唯一不一样的就是数据范围; 上一题是248,而这一题是262144; 普通的区间dp表示状 ...

  6. 「USACO16OPEN」「LuoguP3147」262144(区间dp

    P3147 [USACO16OPEN]262144 题目描述 Bessie likes downloading games to play on her cell phone, even though ...

  7. 【BZOJ-4380】Myjnie 区间DP

    4380: [POI2015]Myjnie Time Limit: 40 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 162  Solved: ...

  8. 【POJ-1390】Blocks 区间DP

    Blocks Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5252   Accepted: 2165 Descriptio ...

  9. 区间DP LightOJ 1422 Halloween Costumes

    http://lightoj.com/volume_showproblem.php?problem=1422 做的第一道区间DP的题目,试水. 参考解题报告: http://www.cnblogs.c ...

随机推荐

  1. 内置方法(item系列)

    class Foo: def __init__(self,name): self.name = name def __getitem__(self, item): # 获取时触发 print('get ...

  2. ajax 个人理解 学习笔记

    W:Ajax Q:异步网络请求.无刷新请求数据. W:ajax的实现流程如下: Q: 创建XHR对象 调用open()方法,创建请求 调用send()方法,发送请求 捕获请求状态,判断请求结果 获取数 ...

  3. 正式放弃Edge,重新拥抱Chrome

    从Edge还叫斯巴达的时候我就开始用了,本来对浏览器的要求也没多高,能够打开多个选项卡,稳定,支持最新的规范就好了. 但是Edge真的是越来越让我失望了,卡死问题越来越多,崩溃越来越频繁,我也快奔溃了 ...

  4. 剑指offer-从上往下打印二叉树22

    题目描述 从上往下打印出二叉树的每个节点,同层节点从左至右打印. class Solution: # 返回从上到下每个节点值列表,例:[1,2,3] def PrintFromTopToBottom( ...

  5. MyBatis 注解配置及动态SQL

      一.注解配置 目前MyBatis支持注解配置,用注解方式来替代映射文件,但是注解配置还是有点不完善,在开发中使用比较少,大部分的企业还是在用映射文件来进行配置.不完善的地方体现在于当数据表中的字段 ...

  6. UVa -1584 Circular Sequence 解题报告 - C语言

    1.题目大意 输入长度为n$(2\le n\le 100)$的环状DNA串,找出该DNA串字典序最小的最小表示. 2.思路 这题特别简单,一一对比不同位置开始的字符串的字典序,更新result. 3. ...

  7. 四:HDFS Snapshots

    1.介绍 HDFS快照保存某个时间点的文件系统快照,可以是部分的文件系统,也可以是全部的文件系统.快照用来做数据备份和灾备.有以下特点: 1.快照几乎是实时瞬间完成的 2.只有在做快照时文件系统有修改 ...

  8. Phpcms V9导航循环下拉菜单的调用技巧

    这个方法基于PC V9官方模版中的调用方法,然后利用后台的“Phpcms V9菜单是否显示设置”控制菜单是否显示出来. 先看看最后的效果: 调用方法: <div id="navbar& ...

  9. 对Objective-C中runtime的理解

    Objective-C是面向runtime(运行时)的语言,在应用程序运行的时候来决定函数内部实现什么以及做出其它决定的语言.程序员可以在程序运行时创建,检 查,修改类,对象和它们的方法,Object ...

  10. Swift-函数的理解

    /* 函数(Function) 函数是为执行特定功能的自包含的代码块.函数需要给定一个特定标识符(名字),然后当需要的时候, 就调用此函数来执行功能. */ // 函数的定义与调用 // 定义函数时, ...