题目描述

给出一个长度为 $m$ 的序列 $a$ ,编号为 $a_1\sim a_m$,其中 $n$ 个位置的数已经确定,剩下的位置的数可以任意指定。现在令 $b$ 表示 $a$ 的前缀异或和,求 $\sum\limits_{i=1}^mb_i$ 的最小值。

输入

输入第一行两个非负整数n,m,分别表示原始序列a的长度及剩余元素的个数。
之后m行,每行2个数i,ai,表示一个剩余元素的位置和数值。
1<=N<=10^9,0<=M<=Min(n,10^5),0<=ai<=10^9
注意未知的 ai 可以超过已知 ai 的范围。
保证输入中所有的 i 不同,且满足 1 ≤ i ≤ n。

输出

输出一个整数表示可能的最小值

样例输入

5 3
4 0
3 7
5 0

样例输出

7


题解

拆位+乱搞

首先容易发现:每一个连续段的影响是独立的。

进一步可以发现:对于两个连续段之间没有填数的一段,该未填段除最后一个数以外的数的异或和均在取0(显然可以取到)时最优,而该未填段最后一个数只对自己以及后面的连续段产生影响。

更加具体地,若该未填段的最后 $b_i$ 是 $x$ ,后面连续段的数的前缀异或和为 $c_1\sim c_l$ ,则代价就是 $x+\sum\limits_{i=1}^lx\ xor\ c_i$ 。

显然每一位互不影响,于是我们可以拆位,统计出前缀异或和中该位0和1的个数,进而判断 $x$ 的这一位取0和取1时哪一个更优,然后计算答案即可。

这里需要注意一个坑点:如果第一个连续段是从第一个位置开始的,由于没有前一个位置,不能“钦定”最优解,需要特判这种情况,直接计算。

时间复杂度 $O(n\log n)$

#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 100010
using namespace std;
struct data
{
int p , v;
bool operator<(const data &a)const {return p < a.p;}
}a[N];
int s[N] , cnt[31] , tot;
int main()
{
int m , i , j , c;
long long ans = 0;
scanf("%*d%d" , &m);
for(i = 1 ; i <= m ; i ++ ) scanf("%d%d" , &a[i].p , &a[i].v);
sort(a + 1 , a + m + 1);
for(c = 1 ; c <= m ; c ++ )
{
tot = 1 , s[1] = a[c].v;
while(c < m && a[c + 1].p - a[c].p == 1)
tot ++ , s[tot] = a[++c].v ^ s[tot - 1];
if(!(c - tot) && a[1].p == 1)
for(i = 1 ; i <= tot ; i ++ )
ans += s[i];
else
{
for(i = 0 ; i < 30 ; i ++ )
{
cnt[i] = 0;
for(j = 1 ; j <= tot ; j ++ )
if(s[j] & (1 << i))
cnt[i] ++ ;
ans += (1ll << i) * min(cnt[i] , tot - cnt[i] + 1);
}
}
}
printf("%lld\n" , ans);
return 0;
}

【bzoj5108】[CodePlus2017]可做题 拆位+乱搞的更多相关文章

  1. bzoj5108 [CodePlus2017]可做题 位运算dp+离散

    [CodePlus2017]可做题 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 87  Solved: 63[Submit][Status][Dis ...

  2. bzoj5108: [CodePlus2017]可做题

    Description qmqmqm希望给sublinekelzrip出一道可做题.于是他想到了这么一道题目:给一个长度为n的非负整数序列ai,你需 要计算其异或前缀和bi,满足条件b1=a1,bi= ...

  3. hihocoder 1236(2015北京网络赛 J题) 分块bitset乱搞题

    题目大意: 每个人有五门课成绩,初始给定一部分学生的成绩,然后每次询问给出一个学生的成绩,希望知道在给定的一堆学生的成绩比这个学生每门都低或者相等的人数 因为强行要求在线查询,所以题目要求,每次当前给 ...

  4. AtCoder Grand Contest 11~17 做题小记

    原文链接https://www.cnblogs.com/zhouzhendong/p/AtCoder-Grand-Contest-from-11-to-20.html UPD(2018-11-16): ...

  5. BZOJ4888 [Tjoi2017]异或和 FFT或树状数组+二进制拆位

    题面 戳这里 简要题解 做法一 因为所有数的和才100w,所以我们可以直接求出所有区间和. 直接把前缀和存到一个权值数组,再倒着存一遍,大力卷积一波. 这样做在bzoj目前还过不了,但是luogu开O ...

  6. 二进制拆位(贪心)【p2114】[NOI2014]起床困难综合症

    Description 21世纪,许多人得了一种奇怪的病:起床困难综合症,其临床表现为:起床难,起床后精神不佳.作为一名青春阳光好少年,atm一直坚持与起床困难综合症作斗争.通过研究相关文献,他找到了 ...

  7. 【GDKOI2016Day1T1-魔卡少女】【拆位】线段树维护区间内所有连续子区间的异或和

    题意:给出N个数,M个操作.操作有修改和询问两种,每次修改将一个数改成另一个数,每次询问一个区间的所有连续子区间的异或和.n,m<=100000,ai<=1000 题解: 当年(其实也就是 ...

  8. PKUWC/SC 做题笔记

    去年不知道干了些啥,什么省选/营题都没做. 现在赶应该还来得及(?) 「PKUWC2018」Minimax Done 2019.12.04 9:38:55 线段树合并船新玩法??? \(O(n^2)\ ...

  9. HNOI做题记录

    算是--咕完了? 2013.2014的就咕了吧,年代太久远了,并且要做的题还有那么多-- LOJ #2112. 「HNOI2015」亚瑟王 发现打出的概率只和被经过几次有关. 于是\(dp_{i,j} ...

随机推荐

  1. linux 网络编程 3---(io多路复用,tcp并发)

    1,io模型: 阻塞io.非阻塞io.io多路复用,信号驱动io. 阻塞Io与非阻塞io的转换,可用fcntl()函数 #include<unistd.h> #include<fcn ...

  2. VR中为什么需要把游戏音频放在聚光灯里?

    VR中为什么需要把游戏音频放在聚光灯里? 本文章由cartzhang编写,转载请注明出处. 所有权利保留. 文章链接:http://blog.csdn.net/cartzhang/article/de ...

  3. 【POJ2182】Lost Cows

    [POJ2182]Lost Cows 题面 vjudge 题解 从后往前做 每扫到一个点\(i\)以及比前面小的有\(a[i]\)个数 就是查询当前的第\(a[i]+1\)小 然后查询完将这个数删掉 ...

  4. EDM站点

    设计邮件模版 http://templates.mailchimp.com/

  5. 用ext_skel,实现一个PHP扩展,添加到PHP并调用

    1 创建函数定义文件 #mkdir /home/phpext #vi mydefined.skel string get_text(string str) 2 根据README所提供的信息创建预定义文 ...

  6. Java String 字符串类细节探秘

    一. 字符串基本知识要点 字符串类型String是Java中最常用的引用类型.我们在使用Java字符串的时候,通常会采用两种初始化的方式:1. String str = "Hello Wor ...

  7. 6.2 element和elements

    为什么这个要单独拿出来说,因为我在很多群里面看见很多人不能区分这个! 因为之前的包有点问题,另外后续还会更换app,因为部分app可能没有符合的案例场景,我需要找到那个场景给大家做个实例..便于大家跟 ...

  8. 给大家推荐:五个Python小项目,Github上的人气很高的

    1.深度学习框架 Pytorch https://github.com/pytorch/pytorch PyTorch 是一个 Torch7 团队开源的 Python 优先的深度学习框架,提供两个高级 ...

  9. 栈和队列ADT -数据结构(C语言实现)

    数据结构与算法分析 栈模型 限制插入和删除只能在表的末端的表 表的末端叫做栈顶(top) 支持Push进栈和Pop入栈操作 //LIFO后进先出表 栈的实现 链表实现 类型声明 struct Node ...

  10. CSP201612-1:中间数

    引言:CSP(http://www.cspro.org/lead/application/ccf/login.jsp)是由中国计算机学会(CCF)发起的"计算机职业资格认证"考试, ...