https://www.lydsy.com/JudgeOnline/problem.php?id=5335

小豆报名参加智力竞赛,他带上了n个好朋友作为亲友团一块来参加比赛。
比赛规则如下:
一共有m道题目,每个入都有1次答题机会,每次答题为选择一道题目回答,在回答正确后,可以从这个题目的后续题目,直达题目答错题目或者没有后续题目。每个问题都会代表一个价值,比赛最后的参赛选手获得奖励价值等价于该选手和他的亲友团没有回答的问题中的最低价值。我们现在知道小豆和他的亲友团实力非常强,能够做出这次竞赛中的所有题目。
小豆想知道在知道题目和后续题目的条件下,他最大能获得价值是多少?

原来两点可达的floyd求法是传递闭包啊……

我们floyd求出每个点之间是否可达,然后根据这个建边,之后跑一遍最小路径覆盖即可,答案为节点数-最大匹配数。

那么对答案二分,则只有两点都小于答案的点才可以连边,跑一遍即可。

#include<cmath>
#include<queue>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=;
const int M=N*N;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
struct node{
int to,nxt;
}e[M];
int vis[N],head[N],shu[N],cnt;
int w[N],mp[N][N],d[N][N],maxn,n,m;
inline void add(int u,int v){
e[++cnt].to=v;e[cnt].nxt=head[u];head[u]=cnt;
}
bool dfs(int u,int id){
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(vis[v]!=id){
vis[v]=id;
if(!shu[v]||dfs(shu[v],id)){
shu[v]=u;
return ;
}
}
}
return ;
}
inline void init(){
cnt=;
memset(shu,,sizeof(shu));
memset(head,,sizeof(head));
memset(vis,,sizeof(vis));
memset(d,,sizeof(d));
}
bool pan(int val){
init();
for(int i=;i<=m;i++){
for(int j=;j<=m;j++){
if(mp[i][j]&&w[i]<val&&w[j]<val)d[i][j]=;
}
}
for(int k=;k<=m;k++){
for(int i=;i<=m;i++){
if(!d[i][k])continue;
for(int j=;j<=m;j++){
d[i][j]|=d[i][k]&d[k][j];
}
}
}
int ans=;
for(int i=;i<=m;i++){
if(w[i]<val)ans++;
else continue;
for(int j=;j<=m;j++){
if(d[i][j])add(i,j);
}
}
for(int i=;i<=m;i++){
if(w[i]>=val)continue;
if(dfs(i,i))ans--;
}
return ans<=n+;
}
int main(){
n=read(),m=read();
for(int i=;i<=m;i++){
w[i]=read();int k=read();
maxn=max(maxn,w[i]);
for(int j=;j<=k;j++){
int v=read();
mp[i][v]=;
}
}
for(int k=;k<=m;k++){
for(int i=;i<=m;i++){
if(!mp[i][k])continue;
for(int j=;j<=m;j++){
if(i==j)continue;
mp[i][j]|=mp[i][k]&mp[k][j];
}
}
}
int l=,r=maxn+;
while(l<r){
int mid=(l+r+)>>;
if(pan(mid))l=mid;
else r=mid-;
}
if(l==maxn+)puts("AK");
else printf("%d\n",l);
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

BZOJ5335:[TJOI2018]智力竞赛——题解的更多相关文章

  1. BZOJ5335 : [TJOI2018]智力竞赛

    二分答案,转化成求最少的路径,覆盖住所有权值$\leq mid$的点. 建立二分图,若$i$的后继为$j$,则连边$i\rightarrow j$,求出最大匹配,则点数减去最大匹配数即为最少需要的路径 ...

  2. 【BZOJ5335】[TJOI2018]智力竞赛(二分图匹配)

    [BZOJ5335][TJOI2018]智力竞赛(二分图匹配) 题面 BZOJ 洛谷 题解 假装图不是一个DAG想了半天,.发现并不会做. 于是假装图是一个DAG. 那么显然就是二分答案,然后求一个最 ...

  3. [TJOI2018]智力竞赛【网络流】

    题解: 这垃圾题意 问题二分之后等价于 可重复路径判断能否覆盖一张图 1.用floyd连边(来保证可重复) 然后拆点跑最大流 然后答案=n-最大流 但这样子做本来复杂度就比较高,边数增加了n倍 2.我 ...

  4. 洛谷P4589 [TJOI2018]智力竞赛 【floyd + 二分 + KM】

    题目链接 洛谷P4589 题意可能不清,就是给出一个带权有向图,选出\(n + 1\)条链,问能否全部点覆盖,如果不能,问不能覆盖的点权最小值最大是多少 题解 如果要问全部覆盖,就是经典的可重点的DA ...

  5. 洛谷P4589 [TJOI2018]智力竞赛(二分答案 二分图匹配)

    题意 题目链接 给出一个带权有向图,选出n + 1n+1条链,问能否全部点覆盖,如果不能,问不能覆盖的点权最小值最大是多少 Sol TJOI怎么净出板子题 二分答案之后直接二分图匹配check一下. ...

  6. [TJOI2018]智力竞赛

    题目 发现我们需要最大化最小值,基本是二分了 那么我们二分出来一个值我们将小于等于这个值的都删去,现在的问题变成了如何用\(n+1\)条路径覆盖这张图 这不最小路径覆盖吗 于是我就忘了最小路径覆盖怎么 ...

  7. 【洛谷P4589】[TJOI2018]智力竞赛(二分+最小链覆盖)

    洛谷 题意: 给出一个\(DAG\),现在要选出\(n+1\)条可相交的链来覆盖,最终使得未被覆盖的点集中,权值最小的点的权值最大. 思路: 显然最终的答案具有单调性,故直接二分答案来判断: 直接将小 ...

  8. loj#2574. 「TJOI2018」智力竞赛 (路径覆盖)

    目录 题目链接 题解 代码 题目链接 loj#2574. 「TJOI2018」智力竞赛 题解 就是求可重路径覆盖之后最大化剩余点的最小权值 二分答案后就是一个可重复路径覆盖 处理出可达点做二分图匹配就 ...

  9. [Offer收割]编程练习赛3 - 题目3 : 智力竞赛

    智力竞赛 Problem's Link ---------------------------------------------------------------------------- Mea ...

随机推荐

  1. HardcodedDebugMode

    xmlns:tools="http://schemas.android.com/tools" tools:ignore="HardcodedDebugMode"

  2. DirectX11与DirectX12在古墓丽影暗影中的表现

    最近在关注这两个图形API,因为感兴趣,也算是初学者. 以下内容仅供参考. 使用古墓丽影暗影游戏,分别对这两个进行比较,得出的结论如下图(此笔记本散热很差,更改散热应该比下图结果好些): 首先看可以很 ...

  3. Siki_Unity_1-9_Unity2D游戏开发_Roguelike拾荒者

    Unity 1-9 Unity2D游戏开发 Roguelike拾荒者 任务1:游戏介绍 Food:相当于血量:每走一步下降1,吃东西可以回复(果子10药水20),被怪物攻击会减少中间的障碍物可以打破, ...

  4. java后台接受web前台传递的数组参数

    前台发送:&warning_type[]=1,2 &warning_type=1,2 后台接收:(@RequestParam(value = "param[]") ...

  5. Python基础 之 文件操作

    文件操作 一.路径 文件绝对路径:d:\python.txt 文件相对路径:在IDEA左边的文件夹中 二.编码方式 utf-8 gbk... 三.操作方式 1.只读 r 和 rb 绝对路径的打开操作 ...

  6. 【第六章】MySQL日志文件管理

    1.日志文件管理概述: 配置文件:/etc/my.cnf 作用:MySQL日志文件是用来记录MySQL数据库客户端连接情况.SQL语句的执行情况以及错误信息告示. 分类:MySQL日志文件分为4种:错 ...

  7. 开源自动驾驶仿真平台 AirSim (3) - 运行 AirSim

    AirSim 的官方 Github: https://github.com/Microsoft/AirSim 之前配置了很多,终于要让 AirSim 自己跑起来了. 我们需要把 AirSim 这个插件 ...

  8. 关于GitHub推送时发生Permission denied (publickey)的问题

    今天在学习廖雪峰老师官网的git教程“添加远程库”时发现总是推送失败,下边提示“Permission denied (publickey) 这个问题” 传送门:https://www.liaoxuef ...

  9. 我的linux操作习惯

    标签(空格分隔): ubuntu 最佳操作 用linux随时可能会有宕机的危险,谁知道我哪会神经病犯了呢.用deepin宕机的可能性会更高的,所以我才不得不安装一个windows做备份,然后把数据备份 ...

  10. CryptoZombies学习笔记——Lesson5

    chapter1:token代币 简而言之,通证就是支持交易的包含一系列规范的函数接口的一个智能合约,发币可以用ERC20标准,但是像僵尸这种非同质化代币,需要用ERC721标准 chapter2:e ...