【刷题】UOJ #34 多项式乘法
这是一道模板题。
给你两个多项式,请输出乘起来后的多项式。
输入格式
第一行两个整数 \(n\) 和 \(m\) ,分别表示两个多项式的次数。
第二行 \(n+1\) 个整数,表示第一个多项式的 \(0\) 到 \(n\) 次项系数。
第三行 \(m+1\) 个整数,表示第二个多项式的 \(0\) 到 \(m\) 次项系数。
输出格式
一行 \(n+m+1\) 个整数,表示乘起来后的多项式的 \(0\) 到 \(n+m\) 次项系数。
样例一
input
1 2
1 2
1 2 1
output
1 4 5 2
explanation
\((1 + 2x) \cdot (1 + 2x + x^2) = 1 + 4x + 5x^2 + 2x^3\)
限制与约定
\(0 \leq n, m \leq 10^5\),保证输入中的系数大于等于 \(0\) 且小于等于 \(9\) 。
时间限制:1s
空间限制:256MB
题解
迟来的FFT,用的迭代版,更快一些
Menci的博客写得很好
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=1<<21;
const db Pi=acos(-1.0);
int n1,n2,n,m,rev[MAXN],cnt;
struct Complex{
db real,imag;
inline Complex operator + (const Complex &A){
return (Complex){real+A.real,imag+A.imag};
};
inline Complex operator - (const Complex &A){
return (Complex){real-A.real,imag-A.imag};
};
inline Complex operator * (const Complex &A){
return (Complex){real*A.real-imag*A.imag,imag*A.real+real*A.imag};
};
};
Complex a[MAXN],b[MAXN];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void FFT(Complex *A,int tp)
{
for(register int i=0;i<n;++i)
if(i<rev[i])std::swap(A[i],A[rev[i]]);
for(register int l=2;l<=n;l<<=1)
{
Complex wn=(Complex){cos(2*Pi/l),sin(tp*2*Pi/l)};
for(register int i=0;i<n;i+=l)
{
Complex w=(Complex){1,0};
for(register int j=0;j<(l>>1);++j)
{
Complex A1=A[i+j],A2=A[i+j+(l>>1)]*w;
A[i+j]=A1+A2;A[i+j+(l>>1)]=A1-A2;
w=w*wn;
}
}
}
}
int main()
{
read(n1);read(n2);
n1++;n2++;m=n1+n2-1;
for(register int i=0;i<n1;++i)scanf("%lf",&a[i].real);
for(register int i=0;i<n2;++i)scanf("%lf",&b[i].real);
for(n=1;n<m;n<<=1)++cnt;
for(register int i=0;i<n;++i)rev[i]=(rev[i>>1]>>1)|((i&1)<<(cnt-1));
FFT(a,1);FFT(b,1);
for(register int i=0;i<=n;++i)a[i]=a[i]*b[i];
FFT(a,-1);
for(register int i=0;i<m;++i)write((int)(a[i].real/n+0.5),' ');
puts("");
return 0;
}
【刷题】UOJ #34 多项式乘法的更多相关文章
- [UOJ#34]多项式乘法
[UOJ#34]多项式乘法 试题描述 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入 第一行两个整数 n 和 m,分别表示两个多项式的次数. 第二行 n+1 个整数,分别表示第一个多 ...
- UOJ 34: 多项式乘法(FFT模板题)
关于FFT 这个博客的讲解超级棒 http://blog.miskcoo.com/2015/04/polynomial-multiplication-and-fast-fourier-transfor ...
- ●UOJ 34 多项式乘法
题链: http://uoj.ac/problem/34 题解: FFT入门题. (终于接触到迷一样的FFT了) 初学者在对复数和单位根有简单了解的基础上,可以直接看<再探快速傅里叶变换> ...
- UOJ#34. 多项式乘法(NTT)
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项 ...
- UOJ 34 多项式乘法 FFT 模板
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项 ...
- 2018.11.14 uoj#34. 多项式乘法(fft)
传送门 NOIpNOIpNOIp爆炸不能阻止我搞oioioi的决心 信息技术课进行一点康复训练. fftfftfft板题. 代码: #include<bits/stdc++.h> usin ...
- 2018.11.14 uoj#34. 多项式乘法(ntt)
传送门 今天学习nttnttntt. 其实递归方法和fftfftfft是完全相同的. 只不过fftfftfft的单位根用的是复数中的东西,而nttnttntt用的是数论里面有相同性质的原根. 代码: ...
- UOJ 34 多项式乘法 ——NTT
[题目分析] 快速数论变换的模板题目. 与fft的方法类似,只是把复数域中的具有循环性质的单位复数根换成了模意义下的原根. 然后和fft一样写就好了,没有精度误差,但是跑起来比较慢. 这破题目改了好长 ...
- [UOJ 0034] 多项式乘法
#34. 多项式乘法 统计 描述 提交 自定义测试 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+ ...
随机推荐
- java 字符串与整型相互转换
如何将字串 String 转换成整数 int? A. 有两个方法: 1). int i = Integer. parseInt ([String]); 或 i = Integer.parseInt ( ...
- C# Builder
如下: class Program { static void Main(string[] args) { ).BuildB(2.1).BuildUp(); Console.Read(); } } p ...
- Qt-QML-自定义个自己的文本Text
好久都没有正经的更新自己的文章了,这段时间也辞职了,听了小爱的,准备买个碗,自己当老板,下面请欣赏效果图 这个界面布局就是自己是在想不到啥了,按照常规汽车导航的布局布局了一下,主要看内容哈,看看这个文 ...
- JMeter随机上传附件
方法一: 1.添加一个前置Beanshell 2.输入代码: File folder = new File("/path/to/your/folder/with/audiofiles&quo ...
- MySQL连接本地数据库时报1045错误的解决方法
navicat for MySQL 连接本地数据库出现1045错误 如下图: 说明连接mysql时数据库密码错误,需要修改密码后才可解决问题: 解决步骤如下: .首先打开命令行:开始->运行 ...
- MySQL☞lower函数
lower(列名/字符串):将大写字母改成小写字母 格式: select lower(列名/字符串) from 表名 如下图:
- jmeter关联三种常用方法
在LR中有自动关联跟手动关联,但在我看来手动关联更准确,在jmeter中,就只有手动关联 为什么要进行关联:对系统进行操作时,本次操作或下一次操作对服务器提交的请求,这参数里边有部分参数需要服务器返回 ...
- android自动化のadb常用命令(不定期更新)
1. adb devices 执行结果是adb为每一个设备输出以下状态信息:序列号(serialNumber) — 由adb创建的使用控制台端口号的用于唯一标识一个模拟器或手机设备的字符串,格式是 & ...
- 第六模块:WEB框架开发 第1章·Django框架开发50~87
51-表关系之一对多 52-表关系之多对多 53-表关系之一对一 54-数据库表关系之关联字段与外键约束 55-数据库表关系之sql创建关联表 56-ORM生成关联表模型 57-多表操作之一对多添加记 ...
- 运用GamePlayKit的GKEntity及GKComponent 的iOS游戏开发实例
GameplayKit是一个面向对象的框架,为构建游戏提供基础工具和技术. GameplayKit包含用于设计具有功能性,可重用架构的游戏的工具,以及用于构建和增强诸如角色移动和对手行为的游戏玩法特征 ...