Description

Farmer John正在一个新的销售区域对他的牛奶销售方案进行调查。他想把牛奶送到T个城镇 (1 <= T <= 25,000),编号为1T。这些城镇之间通过R条道路 (1 <= R <= 50,000,编号为1到R) 和P条航线 (1 <= P <= 50,000,编号为1到P) 连接。每条道路i或者航线i连接城镇A_i (1 <= A_i <= T)到B_i (1 <= B_i <= T),花费为C_i。对于道路,0 <= C_i <= 10,000;然而航线的花费很神奇,花费C_i可能是负数(-10,000 <= C_i <= 10,000)。道路是双向的,可以从A_i到B_i,也可以从B_i到A_i,花费都是C_i。然而航线与之不同,只可以从A_i到B_i。事实上,由于最近恐怖主义太嚣张,为了社会和谐,出台 了一些政策保证:如果有一条航线可以从A_i到B_i,那么保证不可能通过一些道路和航线从B_i回到A_i。由于FJ的奶牛世界公认十分给力,他需要运送奶牛到每一个城镇。他想找到从发送中心城镇S(1 <= S <= T) 把奶牛送到每个城镇的最便宜的方案,或者知道这是不可能的。

Input

* 第1行:四个空格隔开的整数: T, R, P, and S * 第2到R+1行:三个空格隔开的整数(表示一条道路):A_i, B_i 和 C_i * 第R+2到R+P+1行:三个空格隔开的整数(表示一条航线):A_i, B_i 和 C_i

Output

* 第1到T行:从S到达城镇i的最小花费,如果不存在输出"NO PATH"。

Sample Input

6 3 3 4
1 2 5
3 4 5
5 6 10
3 5 -100
4 6 -100
1 3 -10

样例输入解释:

一共六个城镇。在1-2,3-4,5-6之间有道路,花费分别是5,5,10。同时有三条航线:3->5,
4->6和1->3,花费分别是-100,-100,-10。FJ的中心城镇在城镇4。

Sample Output

NO PATH
NO PATH
5
0
-95
-100

样例输出解释:

FJ的奶牛从4号城镇开始,可以通过道路到达3号城镇。然后他们会通过航线达到5和6号城镇。
但是不可能到达1和2号城镇。

————————————————————————————————————
这道题spfa+slf优化之后就可以AC了不过很慢QAQ其实是属于强行水过QAQ
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
const int M=3e4+,inf=0x3f3f3f3f;
int read(){
int ans=,f=,c=getchar();
while(c<''||c>''){if(c=='-') f=-; c=getchar();}
while(c>=''&&c<=''){ans=ans*+(c-''); c=getchar();}
return ans*f;
}
bool f=false;
int n,nr,np,S;
int first[M],cnt;
struct node{int to,next,w;}e[*M];
void ins(int a,int b,int w){e[++cnt]=(node){b,first[a],w}; first[a]=cnt;}
void insert(int a,int b,int w){ins(a,b,w); ins(b,a,w);}
int dis[M],vis[M];
int q[M],head,tail=;
void spfa(){
memset(dis,0x3f,sizeof(dis));
dis[S]=; vis[S]=;
q[head]=S;
while(head!=tail){
int x=q[head++]; if(head>M) head=;
for(int i=first[x];i;i=e[i].next){
int now=e[i].to;
if(dis[now]>dis[x]+e[i].w){
dis[now]=dis[x]+e[i].w;
if(!vis[now]){
vis[now]=;
if(dis[now]<=dis[q[head]]){
head--;
if(head<) head=M;
q[head]=now;
}
else{q[tail++]=now; if(tail>M) tail=;}
}
}
}
vis[x]=;
}
for(int i=;i<=n;i++)
if(dis[i]>=inf) printf("NO PATH\n");
else printf("%d\n",dis[i]);
}
int main(){
int x,y,w;
n=read(); nr=read(); np=read(); S=read();
for(int i=;i<=nr;i++) x=read(),y=read(),w=read(),insert(x,y,w);
for(int i=;i<=np;i++) x=read(),y=read(),w=read(),ins(x,y,w);
spfa();
return ;
}

当然正解是dijkstra +一波拓扑排序

因为负权边是有向且不存在能经过负权边的环 所以我们可以忽略航道

把图变成一个一个的颜色块

这样我们可以单独处理每个块的信息

至于为什么要拓扑 给个图吧

从S开始拓扑嘛 必须是所有指向一个块的前块都处理完才能处理当前块

当然像图中的红色点 如果正常的拓扑S所在的联通块入度就不为0了

而且实际上这两个块应该是无解的 我们要先处理这种情况

其实从S 开始dfs一波标记一下就好了

然后根据拓扑序每个块dijkstra就可以了(细节有点多QAQ

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
const int M=3e4+,inf=0x3f3f3f3f;
char buf[*M],*ptr=buf-;
int read(){
int ans=,f=,c=*++ptr;
while(c<''||c>''){if(c=='-') f=-; c=*++ptr;}
while(c>=''&&c<=''){ans=ans*+(c-''); c=*++ptr;}
return ans*f;
}
bool flag=false;
int n,nr,np,S;
int first[M],cnt;
struct node{int to,next,w;}e[*M];
void ins(int a,int b,int w){e[++cnt]=(node){b,first[a],w}; first[a]=cnt;}
void insert(int a,int b,int w){ins(a,b,w); ins(b,a,w);}
int color[M],hc;
void dfs(int x){
color[x]=hc;
for(int i=first[x];i;i=e[i].next){
int now=e[i].to;
if(!color[now]) dfs(now);
}
}
int sum,star[M];
struct pos{int from,to,next,w;}q[*M];
void insq(int a,int b,int w){q[++sum]=(pos){a,b,star[a],w}; star[a]=sum;}
int f[M],vis[M];
void find(int x){
vis[x]=f[color[x]]=n+;
for(int i=first[x];i;i=e[i].next){
int now=e[i].to;
if(!vis[now]) find(now);
}
}
int k,dis[M],wh[M],mark[*M];
struct QAQ{
int d,id;
bool operator <(const QAQ& x)const{return x.d<d;}
};
std::priority_queue<QAQ>qu[M];
std::queue<int>Q;
int in[M];
void find_w(int x){
vis[x]=k;
for(int i=star[x];i;i=q[i].next){
int now=color[q[i].to];
dis[q[i].to]=std::min(dis[q[i].to],dis[x]+q[i].w);
qu[now].push((QAQ){dis[q[i].to],q[i].to});
if(!--in[now]) Q.push(now);
}
for(int i=first[x];i;i=e[i].next)if(!mark[i]){
int now=e[i].to;
if(vis[now]!=k) find_w(now);
}
}
int main(){
fread(buf,,sizeof(buf),stdin);
int x,y,w;
n=read(); nr=read(); np=read(); S=read();
for(int i=;i<=nr;i++) x=read(),y=read(),w=read(),insert(x,y,w);
for(int i=;i<=n;i++)if(!color[i]) hc++,wh[hc]=i,dfs(i);
//for(int i=1;i<=n;i++) printf("[%d] ",color[i]); puts("");
for(int i=;i<=np;i++) x=read(),y=read(),w=read(),ins(x,y,w),mark[cnt]=,insq(x,y,w);
find(S); //for(int i=1;i<=hc;i++) printf("[%d]\n",f[i]);
memset(dis,0x3f,sizeof(dis)); dis[S]=;
for(int i=;i<=sum;i++) if(f[color[q[i].from]]&&f[color[q[i].to]]) in[color[q[i].to]]++;
//for(int i=1;i<=hc;i++) printf("[%d] ",in[i]); puts("");
Q.push(color[S]); qu[color[S]].push((QAQ){,S});
while(!Q.empty()){
int x=Q.front(); Q.pop(); k++;
while(!qu[x].empty()){
QAQ p=qu[x].top(); qu[x].pop();
if(dis[p.id]<p.d) continue;
for(int i=first[p.id];i;i=e[i].next)if(!mark[i]){
int now=e[i].to;
if(dis[now]>dis[p.id]+e[i].w) dis[now]=dis[p.id]+e[i].w,qu[x].push((QAQ){dis[now],now});
}
}
//printf("[%d]\n",x);
find_w(wh[x]);
}
for(int i=;i<=n;i++)
if(dis[i]>=inf) printf("NO PATH\n");
else printf("%d\n",dis[i]);
return ;
}

bzoj 2200: [Usaco2011 Jan]道路和航线——拓扑+dijkstra的更多相关文章

  1. [BZOJ 2200][Usaco2011 Jan]道路和航线 spfa+SLF优化

    Description Farmer John正在一个新的销售区域对他的牛奶销售方案进行调查.他想把牛奶送到T个城镇 (1 <= T <= 25,000),编号为1T.这些城镇之间通过R条 ...

  2. BZOJ 2200: [Usaco2011 Jan]道路和航线

    Description Farmer John正在一个新的销售区域对他的牛奶销售方案进行调查.他想把牛奶送到T个城镇 (1 <= T <= 25,000),编号为1T.这些城镇之间通过R条 ...

  3. bzoj 2200: [Usaco2011 Jan]道路和航线【spfa】

    直接跑最短路就行了--还不用判负环 #include<iostream> #include<cstdio> #include<queue> using namesp ...

  4. 2200: [Usaco2011 Jan]道路和航线 (拓扑排序+dijstra)

    Description Farmer John正在一个新的销售区域对他的牛奶销售方案进行调查.他想把牛奶送到T个城镇 (1 <= T <= 25,000),编号为1T.这些城镇之间通过R条 ...

  5. 【BZOJ】2200: [Usaco2011 Jan]道路和航线

    [题意]给定n个点的图,正权无向边,正负权有向边,保证对有向边(u,v),v无法到达u,求起点出发到达所有点的最短距离. [算法]拓扑排序+dijkstra [题解]因为有负权边,直接对原图进行spf ...

  6. [Usaco2011 Jan]道路和航线

    Description Farmer John正在一个新的销售区域对他的牛奶销售方案进行调查.他想把牛奶送到T个城镇 (1 <= T <= 25,000),编号为1T.这些城镇之间通过R条 ...

  7. bzoj2200: [Usaco2011 Jan]道路和航线

    先忽略航线,求出图中所有连通块,再用航线拓扑排序求出每个连通块的优先级 然后dijkstra时优先处理优先级高的块里的点就行了 ps:这题SPFA会TLE #include <iostream& ...

  8. BZOJ 2200--[Usaco2011 Jan]道路和航线(最短路&拓扑排序)

    2200: [Usaco2011 Jan]道路和航线 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1128  Solved: 414[Submit] ...

  9. BZOJ 2199: [Usaco2011 Jan]奶牛议会

    2199: [Usaco2011 Jan]奶牛议会 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 375  Solved: 241[Submit][S ...

随机推荐

  1. IE中的activex控件

    1.tree控件 DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"><HTML><HE ...

  2. Android - 时间 日期相关组件

    源码下载地址 : -- CSDN :  http://download.csdn.net/detail/han1202012/6856737 -- GitHub : https://github.co ...

  3. Codeforces Round #367 (Div. 2) D. Vasiliy's Multiset Trie

    题目链接: http://codeforces.com/contest/706/problem/D D. Vasiliy's Multiset time limit per test:4 second ...

  4. Spring管理事务默认回滚的异常

    一.默认方式 Spring的事务管理默认只对出现运行期异常(java.lang.RuntimeException及其子类),Error进行回滚. 如果一个方法抛出Exception或者Checked异 ...

  5. TCP系列12—重传—2、Linux超时重传引入示例

    在前面我们概述了TCP的超时重传之后我们简单的看一下tcp超时重传的示例.首先简单的描述一下测试过程 1.设置/proc/sys/net/ipv4/tcp_early_retrans为2,关掉TLP功 ...

  6. 【OSG】运行OSG示例出现的奶牛不完整问题

    发现一个很奇怪的问题:我用笔记本运行OSG里面的示例,出现的图案总是不完整显示的,以经典的奶牛图案为例,如图. 图一是我电脑上的情况,正常情况应该是图二.不知道这是什么原因,难道是我电脑显卡的原因吗? ...

  7. vue服务端渲染简单入门实例

    想到要学习vue-ssr的同学,自不必多说,一定是熟悉了vue,并且多多少少做过几个项目.然后学习vue服务端渲染无非解决首屏渲染的白屏问题以及SEO友好. 话不多说,笔者也是研究多日才搞明白这个服务 ...

  8. 选择正确的C/C++ runtime library

    本文是对http://www.davidlenihan.com/2008/01/choosing_the_correct_cc_runtim.html的翻译,如有错误,还请指正 c/c++运行库(ru ...

  9. [C/C++] 原码、反码、补码问题

    正确答案:D 解析: C语言中变量以补码形式存放在内存中,正数的补码与原码相同,负数求补码方式为(符号位不变,其余各位取反,最后末尾加1): 32位机器:int 32位,short 16位.  x = ...

  10. 【bzoj1708】[USACO2007 Oct]Money奶牛的硬币 背包dp

    题目描述 在创立了她们自己的政权之后,奶牛们决定推广新的货币系统.在强烈的叛逆心理的驱使下,她们准备使用奇怪的面值.在传统的货币系统中,硬币的面值通常是1,5,10,20或25,50,以及100单位的 ...