【GD32L233C-START】DAC输出(正弦波、锯齿波、方波)

1.介绍
GD32L233C采用的是一款M23的内核。这个芯片据说功耗非常的低,低到什么程度呢?等后面我们再进行测试,今天我们主要来测试GD32L233C-START的DAC,既然要测试DAC,示波器是不可少的,这个实验在家做,然而LZ家里并没有示波器,不过最近看到一款好东西,LOTO虚拟示波器,看过这款示波器的参数,还不错。所以入手了一款,测量芯片输出的DAC应该没什么问题,接下来开始测试吧。
2.设计
首先需要输出让芯片输出DAC,而且还需要输出波形,这个稍微费点功夫,之前在GD32L233C-START移植了RTThread,现在在这个代码的基础上添加DAC的输出程序,这个程序移植了其他网友的,代码我也贴出来,经过测试,代码没有啥问题:
比较麻烦的是正弦波的代码:

const float sinus_I_quarter[91] =
{
    0.0000, 0.0175, 0.0349, 0.0523, 0.0698, 0.0872, 0.1045, 0.1219, 0.1392, 0.1564, // 00 .. 09
    0.1736, 0.1908, 0.2079, 0.2250, 0.2419, 0.2588, 0.2756, 0.2924, 0.3090, 0.3256, // 10 .. 19
    0.3420, 0.3584, 0.3746, 0.3907, 0.4067, 0.4226, 0.4384, 0.4540, 0.4695, 0.4848, // 20 .. 29
    0.5000, 0.5150, 0.5299, 0.5446, 0.5592, 0.5736, 0.5878, 0.6018, 0.6157, 0.6293, // 30 .. 39
    0.6428, 0.6561, 0.6691, 0.6820, 0.6947, 0.7071, 0.7193, 0.7314, 0.7431, 0.7547, // 40 .. 49
    0.7660, 0.7771, 0.7880, 0.7986, 0.8090, 0.8192, 0.8290, 0.8387, 0.8480, 0.8572, // 50 .. 59
    0.8660, 0.8746, 0.8829, 0.8910, 0.8988, 0.9063, 0.9135, 0.9205, 0.9272, 0.9336, // 60 .. 69
    0.9397, 0.9455, 0.9511, 0.9563, 0.9613, 0.9659, 0.9703, 0.9744, 0.9781, 0.9816, // 70 .. 79
    0.9848, 0.9877, 0.9903, 0.9925, 0.9945, 0.9962, 0.9976, 0.9986, 0.9994, 0.9998, // 80 .. 89
    1.0000                                                                          // 90
};

#define CIRCLE_QUARTER_1        1
#define CIRCLE_QUARTER_2        2
#define CIRCLE_QUARTER_3        3
#define CIRCLE_QUARTER_4        4
float sinus_lookup (unsigned int angle)
{
    float sin_value;
    unsigned int circle_quarter;
    // correct angles outside the accepted angle range into 0 .. 359
    if (angle > 359u)
        angle = angle % 360u;
    circle_quarter = 1 + (angle / 90u);
    switch (circle_quarter)
    {
        case CIRCLE_QUARTER_1: // 00 .. 89
            sin_value = sinus_I_quarter[angle];
            break;
        case CIRCLE_QUARTER_2: // 90 .. 179
            sin_value = sinus_I_quarter[180 - angle];
            break;
        case CIRCLE_QUARTER_3: // 180 .. 269
            sin_value = -sinus_I_quarter[angle - 180];
            break;
        case CIRCLE_QUARTER_4: // 270 .. 359
            sin_value = -sinus_I_quarter[360 - angle];
            break;
    }
    return sin_value;
}

void plot_sin(uint32_t f, uint32_t delta_f)
{
    /* 定时周期为T=1/delta_f, f=1/(pMax*T) */
    static uint32_t point = 0;
    uint32_t pMAX = delta_f/f;
    uint32_t value = 0;
    if (point++ > pMAX) point = 0;    
    value = (uint32_t)((sinus_lookup(360*point/pMAX)+1)*10000)*2047/10000;
    dac_software_trigger_enable();
    dac_data_set(DAC_ALIGN_12B_R, value);
}

接下来是锯齿波和方波的代码,这两个代码比较简单:

void plot_triangle(uint32_t f, uint32_t delta_f)
{
    /* 定时周期为T=1/delta_f, f=1/(pMax*T) */
    static uint32_t point = 0;
    uint32_t pMAX = delta_f/f;
    uint32_t pMAX2 = pMAX/2;
    uint32_t value = 0;
    if (++point > pMAX) point = 0;
    if (point < pMAX2)
    {
        value = point * 4095 / pMAX2;
    }
    else
    {
        value = (pMAX - point) * 4095 / pMAX2;
    }
    dac_software_trigger_enable();
    dac_data_set(DAC_ALIGN_12B_R, value);
}
void plot_square(uint32_t f, uint32_t delta_f)
{
    /* 定时周期为T=1/delta_f, f=1/(pMax*T) */
    static uint32_t point = 0;
    uint32_t pMAX = delta_f/f;
    uint32_t pMAX2 = pMAX/2;
    uint32_t value = 0;
    if (++point > pMAX) point = 0;
    if (point < pMAX2)
    {
        value = 0;
    }
    else
    {
        value = 0xFFF;
    }
    dac_software_trigger_enable();
    dac_data_set(DAC_ALIGN_12B_R, value);
}

最后需要开启一个定时器,还有DAC的初始化:

void timerx_init(uint32_t timer_periph, uint16_t period, uint16_t prescaler)
{
    /* TIMER1 configuration: input capture mode -------------------
    the external signal is connected to TIMER1 CH0 pin (PA0)
    the rising edge is used as active edge
    the TIMER1 CH0CV is used to compute the frequency value
    ------------------------------------------------------------ */
    timer_parameter_struct timer_initpara;
    timer_ic_parameter_struct timer_icinitpara;

    /* enable the peripherals clock */
    rcu_periph_clock_enable(RCU_TIMER2);

    /* deinit a TIMER */
    timer_deinit(timer_periph);
    /* initialize TIMER init parameter struct */
    timer_struct_para_init(&timer_initpara);
    /* TIMER1 configuration */
    timer_initpara.prescaler        = prescaler;
    timer_initpara.alignedmode      = TIMER_COUNTER_EDGE;
    timer_initpara.counterdirection = TIMER_COUNTER_UP;
    timer_initpara.period           = period;
    timer_initpara.clockdivision    = TIMER_CKDIV_DIV1;
    timer_init(timer_periph, &timer_initpara);

    /* TIMER1 CH0 input capture configuration */
    timer_icinitpara.icpolarity  = TIMER_IC_POLARITY_RISING;
    timer_icinitpara.icselection = TIMER_IC_SELECTION_DIRECTTI;
    timer_icinitpara.icprescaler = TIMER_IC_PSC_DIV1;
    timer_icinitpara.icfilter = 0x00;
    timer_input_capture_config(timer_periph, TIMER_CH_0, &timer_icinitpara);

    /* auto-reload preload enable */
    timer_auto_reload_shadow_enable(timer_periph);
    /* clear channel 0 interrupt bit */
    timer_interrupt_flag_clear(timer_periph, TIMER_INT_CH0);
    /* channel 0 interrupt enable */
    timer_interrupt_enable(timer_periph, TIMER_INT_CH0);

    /* enable a TIMER */
    timer_enable(timer_periph);
}

#define DAC_WAVE_TEST

void timer2_init(void)
{
    timer_deinit(TIMER2);
    rcu_periph_clock_enable(RCU_TIMER2);
#ifdef DAC_WAVE_TEST
    timerx_init(TIMER2, 639, 9);  // 100KHz 0.1ms
#endif
    timer_interrupt_enable(TIMER2, TIMER_INT_UP);
    nvic_irq_enable(TIMER2_IRQn, 3);
}

void TIMER2_IRQHandler(void)
{
#ifdef DAC_WAVE_TEST
    plot_sin(100, 10000);       //正弦波
    //plot_triangle(1, 10000);  //锯齿波
    //plot_square(1, 10000);    //方波
#endif
    timer_interrupt_flag_clear(TIMER2, TIMER_INT_FLAG_UP);
}

void dac1_init(void)
{
    rcu_periph_clock_enable(RCU_GPIOA);
    rcu_periph_clock_enable(RCU_DAC);
    gpio_mode_set(GPIOA, GPIO_MODE_ANALOG, GPIO_PUPD_NONE, GPIO_PIN_4);
    dac_deinit();
    /* software trigger */
    dac_trigger_enable();
    dac_trigger_source_config(DAC_TRIGGER_SOFTWARE);
    /* no noise wave */
    dac_wave_mode_config(DAC_WAVE_DISABLE);
    /* noise wave - triangle */
    //dac_wave_mode_config(DAC_WAVE_MODE_TRIANGLE);
    //dac_triangle_noise_config(DAC_TRIANGLE_AMPLITUDE_4095);
    /* noise wave - lfsr */
    //dac_wave_mode_config(DAC_WAVE_MODE_LFSR);
    //dac_lfsr_noise_config(DAC_LFSR_BITS11_0);
    dac_output_buffer_enable();
    /* enable DAC and set data */
    dac_enable();
    dac_software_trigger_enable();
    dac_data_set(DAC_ALIGN_12B_R, 0);
}

这样就可以输出正弦波、锯齿波和方波了。
3.波形测量
接下来我们来看一下输出的波形是否符合要求,首先需要将【GD32L233C-START】开发板连接LOTO示波器,分别连接GND和PA4管教,连接效果图如下图1所示。

图1

然后让DAC输出正弦波,看一下波形如何。

图2

从上图2中可以看到,一个周期大约在10ms,所以正弦波的周期为100Hz,输出还是听精准的。
然后输出锯齿波看看波形如何。

图3

从上图3可以得出,锯齿波的波形频率为1Hz。
最后我们来看看方波的波形图如何。

图4

从上图4可以看到,方波的波形频率为1Hz。
从上面波形可以得出,【GD32L233C-START】的定时器比较精准,DAC的输出值也比较稳定,性能还是不错的!
4.总结
刚入手的LOTO示波器还不错,测量的精度挺高的,不过还有好多设置没弄明白,等后续多琢磨琢磨。做电子的示波器是必不可少的,我先替你们测试测试这个示波器如何。
GD32L233C是新出来的芯片,整体功能还需要多进行测试,它最突出的低功耗后续要好好测量一下,这次就先到这里了。

【GD32L233C-START】DAC输出(正弦波、锯齿波、方波)的更多相关文章

  1. 002_89C52_Proteus_DAC0832_输出50HZ,正弦波,三角波,矩形波,锯齿波

    (一)非常感谢:89C51与ad0832 输出正弦波,三角波,矩形波,锯齿波 (二)在上面的情况下进行程序的修改,实现50HZ的输出 (三)电路图 (三)输出方波 (四)输出锯齿波 (五)输出三角波 ...

  2. 电赛初探(一)——正弦波、方波、锯齿波转换

    一.题目要求: 1.使用555做出脉冲方波 2.使用TL084运放做出方波和锯齿波 3.使用TLM314稳压做直流偏置 4.方波要求峰峰值为1V,正弦波要求峰值为0~2V,锯齿波要求峰峰值为1V. 二 ...

  3. 几种比较经典的波形及其FFT变换(正弦波,三角波,方波和锯齿波)

    之前上学时我的信号学得最差了,主要原因还是我高数学得不怎么样.可能是人总敬畏自己最不会的,所以我觉得我学过诸多科目中,数学是最博大精深而最妙的,从最开始的一次函数到反比例函数,二次三次函数和双曲线,椭 ...

  4. STM32 使用DMA+DAC+TIMER 输出正弦波

    之前已经简单论述过,根据我个人菜鸟的了解与认识,对之前的知识进行整理回顾: DMA:我的理解就是一个通道,或者是一座桥梁.在静态内存到静态内存,或者外设到静态内存间的一个通讯的通道.建立这个通道的好处 ...

  5. stm32 DAC输出音频

    #define DAC_DHR8R1_Address 0x40007410 // Init Structure definition DAC_InitTypeDef DAC_InitStructure ...

  6. 如何使用Python输出一个[斐波那契数列]

    如何使用Python输出一个[斐波那契数列]Fibonacci 斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonac ...

  7. 速度上手LM4F LaunchPad 输出多路PWM波

    最近转战到TI的Cortex M4平台后,发现网上关于TI的LM4F120 Launchpad 资料太少了,而且其中大部分都是TI员工或者其合作伙伴提供的,例程太少,导致新手上手很慢. 我只是要实现几 ...

  8. python面试题之如何用Python输出一个斐波那契数列

    so eary! 1 a,b = 0, 1 2 while b<100: 3 print (b), 4 a, b = b, a+b 本文转载自:python黑洞网 原文链接:http://www ...

  9. TMS320VC5509的DAC输出TLV5620

    1. TLV5620的SPI数据是11位的 但是看图3和图4,感觉用2个字节应该也可以的,不知道行不行,可以试一试吧 2. 不过可惜的是5509A的SPI没有11位的,有点麻烦,只能先试试用两个字节行 ...

  10. 如何用Python输出一个斐波那契Fibonacci数列

    a,b = 0, 1 while b<100: print (b), a, b = b, a+b

随机推荐

  1. Spring的接口集合注入功能

    Spring的接口集合注入功能 对于Spring中已经注入的bean, 可以使用Autowired, 通过Map<String, BeanInterface>或List<BeanIn ...

  2. Linux上安装和部署git

    本机环境: [git@rhel-server .ssh]$ cat /proc/version Linux version 2.6.32-358.el6.x86_64 1.安装 yum install ...

  3. 【Android 逆向】【攻防世界】人民的名义-抓捕赵德汉1-200

    1. 这一题下载下来是个jar文件,感觉很android关系不大,但还是放在了mobile这个分类下了 2. 直接java jar运行,提示需要输入密码 # java -jar 169e139f152 ...

  4. 【Android 逆向】【ARM汇编】 堆栈

    arm 四种栈 1 空栈 栈指针指向空位,每次存入时可以直接存入然后栈指针移动一格:而取出时需要先移动一格才能取出 2 满栈 栈指针指向栈中最后一格数据.每次存入时需要先移动栈指针一格再存入.取出时可 ...

  5. BUUCTF [强网杯 2019]随便注 1

    1. 拿到题目,先输入一个1'试一下是否存在注入点 报错 error 1064 : You have an error in your SQL syntax; check the manual tha ...

  6. ROS2 humble交叉编译环境配置

    目录 配置 toolchain文件: 库文件 交叉编译指令: 问题点: 1.find_package找不到自定义依赖包的问题 2.libarmadillo.so.10: undefined refer ...

  7. vscode自定义运行和调试创建launch.json文件及项目独立配置文件

    1.创建lauch.json文件 2.然后在项目目录中会自动创建.vscode的目录 3.在.vscode目录下创建settings.json项目独立配置文件 4.在settings.json中写入 ...

  8. 【Azure 事件中心】Event Hubs如何获取其中存放的历史消息

    问题描述 使用Azure Event Hub服务,除了正常的生产,消费消息以外,如果想拿到Event Hub中存储的历史消息?有什么方法呢? 问题解答 获取 Event Hubs 存储的历史消息,首先 ...

  9. .NET周刊【3月第1期 2024-03-03】

    国内文章 推荐10款C#开源好用的Windows软件 https://www.cnblogs.com/Can-daydayup/p/18035760 DevToys.Microsoft PowerTo ...

  10. 冲击900亿美元估值!邀约路演、秘密交表的Shein上市有望

    双十一的狂欢刚刚结束,Shein即将赴美上市的消息又在电商圈里投下一枚重磅炸弹. 继被媒体曝光其寻求900亿美金估值后,最新的消息称其已邀请投资人参与路演,且已秘密完成交表.这个神秘的中国独角兽,离敲 ...