假设我们的模型只有一个参数 \(w\),损失函数为 \(L(w)\),加入 L1 和 L2 正则化后的损失函数分别记为 \(J_1(w), J_2(w)\):

\[\begin{gathered}
J_1(w) = L(w) + \lambda |w| \\
J_2(w) = L(w) + \lambda w^2
\end{gathered}
\]

原损失函数 \(L\) 在 \(w = 0\) 处的导数记为 \(L'(0)\),那么 \(J_1\) 在 \(w = 0\) 处的左、右导数为:

\[\begin{gathered}
J_{-}'(0) = L'(0) - \lambda \\
J_{+}'(0) = L'(0) + \lambda \\
\end{gathered}
\]

当 \(\lambda > |L'(0)|\) 时,\(w = 0\) 处的左导数 \(L'(0) - \lambda < 0\)、右导数 \(L'(0) + \lambda > 0\),此时 \(w = 0\) 为 \(J_1\) 的一个极小值点。

也就是说,即使 \(L\) 不在 \(w = 0\) 处取得极小值(\(L'(0) \neq 0\)),我们也能够通过调节 \(\lambda\) 将损失函数的极小值点“转移”到 \(w = 0\)。

再来看 L2 正则化时的情况,\(J_2\) 在 \(w = 0\) 处的导数为:

\[J_2'(0) = [L'(w) + 2 \lambda w]_{w = 0} = L'(0)
\]

由此可见,如果 \(L\) 不在 \(w = 0\) 处取得极小值(\(L'(0) \neq 0\)),那么加入 L2 正则项后仍然不可能在 \(w = 0\) 处取得极小值。

总结:L1 正则化能将损失函数的极小值点“转移”到 \(w = 0\) 处,而 L2 正则化无论如何设置 \(\lambda\) 都达不到这样的效果。

相关资料:

为什么 L1 正则化能做特征选择而 L2 正则化不能的更多相关文章

  1. 机器学习中的L1、L2正则化

    目录 1. 什么是正则化?正则化有什么作用? 1.1 什么是正则化? 1.2 正则化有什么作用? 2. L1,L2正则化? 2.1 L1.L2范数 2.2 监督学习中的L1.L2正则化 3. L1.L ...

  2. 机器学习中L1,L2正则化项

    搞过机器学习的同学都知道,L1正则就是绝对值的方式,而L2正则是平方和的形式.L1能产生稀疏的特征,这对大规模的机器学习灰常灰常重要.但是L1的求解过程,实在是太过蛋疼.所以即使L1能产生稀疏特征,不 ...

  3. 4.机器学习——统计学习三要素与最大似然估计、最大后验概率估计及L1、L2正则化

    1.前言 之前我一直对于“最大似然估计”犯迷糊,今天在看了陶轻松.忆臻.nebulaf91等人的博客以及李航老师的<统计学习方法>后,豁然开朗,于是在此记下一些心得体会. “最大似然估计” ...

  4. 深入理解L1、L2正则化

    过节福利,我们来深入理解下L1与L2正则化. 1 正则化的概念 正则化(Regularization) 是机器学习中对原始损失函数引入额外信息,以便防止过拟合和提高模型泛化性能的一类方法的统称.也就是 ...

  5. L1正则化和L2正则化

    L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择 L2正则化可以防止模型过拟合(overfitting):一定程度上,L1也可以防止过拟合 一.L1正则化 1.L1正则化 需注意, ...

  6. 机器学习(二十三)— L0、L1、L2正则化区别

    1.概念  L0正则化的值是模型参数中非零参数的个数. L1正则化表示各个参数绝对值之和. L2正则化标识各个参数的平方的和的开方值. 2.问题  1)实现参数的稀疏有什么好处吗? 一个好处是可以简化 ...

  7. L0,L1,L2正则化浅析

    在机器学习的概念中,我们经常听到L0,L1,L2正则化,本文对这几种正则化做简单总结. 1.概念 L0正则化的值是模型参数中非零参数的个数. L1正则化表示各个参数绝对值之和. L2正则化标识各个参数 ...

  8. L1 与 L2 正则化

    参考这篇文章: https://baijiahao.baidu.com/s?id=1621054167310242353&wfr=spider&for=pc https://blog. ...

  9. 防止过拟合:L1/L2正则化

    正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在tr ...

  10. L1正则化与L2正则化的理解

    1. 为什么要使用正则化   我们先回顾一下房价预测的例子.以下是使用多项式回归来拟合房价预测的数据:   可以看出,左图拟合较为合适,而右图过拟合.如果想要解决右图中的过拟合问题,需要能够使得 $ ...

随机推荐

  1. 【算法day4】堆结构、堆排序、比较器以及桶排

    堆与堆结构(优先级队列结构) 知识点: 堆结构就是用数组实现的完全二叉树结构 完全二叉树中如果每棵子树的最大值都在顶部就是大根堆 完全二叉树中如果每棵子树的最小值都在顶部就是小根堆 堆结构的heapl ...

  2. HashMap,TreeMap,LinkedHashMap的默认排序

    简单描述 Map是键值对的集合接口,它的实现类主要包括:HashMap,TreeMap,HashTable以及LinkedHashMap等. TreeMap:能够把它保存的记录根据键(key)排序,默 ...

  3. VIM初使化

    vim ~/.vimrc #设置编码 set encoding=utf-8 fileencodings=ucs-bom,utf-8,cp936 #显示行号 set number #一个tab为4个空格 ...

  4. 【Azure API 管理】如何修改Azure APIM的管理员邮箱和组织名称

    问题描述 当创建一个新的APIM服务时,会要求输入组织名称(Organization name)和管理员邮箱(Administrator email :Set the e-mail address t ...

  5. 【Azure API 管理】APIM如何配置客户端证书的CRL检测策略

    证书吊销列表 (Certificate Revocation List ,简称: CRL)  是 PKI 系统中的一个结构化数据文件,该文件包含了证书颁发机构 (CA) 已经吊销的证书的序列号及其吊销 ...

  6. 用linux命令cd 查找想要找的文件

    如果想找文件Computer下的bin文件,在终端输入绝对路径 cd /bin,不能输入 cd /Computer/bin,因为文件目录不对 文件目录可以在文件的终端看到,/bin就是正确的目录 比如 ...

  7. RocketMQ(2) 消息的生产和存储

    ## 一 : 消息的生产 1. 消息的生产过程 Producer在发送消息时可以将消息写入到指定topic的某Broker中的某Queue中,其经历了如下过程: Producer发送消息之前,会先向N ...

  8. WireShark学习笔记(一)

    1.从WireShark分析网络层协议的传输 下面是网络接口层协议,从图中可以看到两个相邻设备的MAC地址,因此该网络包才能以接力的方式传送到目的地址. 下面是网络层,在这个包中,主要的任务是把TCP ...

  9. 五大基础dp

    动规条件 • 最优化原理:如果问题的最优解所包含的子问题的解也是最优的,就称该问题具有最优子结构, 即满足最优化原理. • 无后效性:即某阶段状态一旦确定,就不受这个状态以后决策的影响.也就是说,某状 ...

  10. C#事件(event)的理解

    一.多播委托的应用--观察者模式 遇到一个开发的问题? 面试者:以面向对象的思想实现一下的场景: 猫:Miao一声,紧接着引发了一系列的行为~ Miao:引发了一系列的动作: 从代码层面来说:代码这样 ...