假设我们的模型只有一个参数 \(w\),损失函数为 \(L(w)\),加入 L1 和 L2 正则化后的损失函数分别记为 \(J_1(w), J_2(w)\):

\[\begin{gathered}
J_1(w) = L(w) + \lambda |w| \\
J_2(w) = L(w) + \lambda w^2
\end{gathered}
\]

原损失函数 \(L\) 在 \(w = 0\) 处的导数记为 \(L'(0)\),那么 \(J_1\) 在 \(w = 0\) 处的左、右导数为:

\[\begin{gathered}
J_{-}'(0) = L'(0) - \lambda \\
J_{+}'(0) = L'(0) + \lambda \\
\end{gathered}
\]

当 \(\lambda > |L'(0)|\) 时,\(w = 0\) 处的左导数 \(L'(0) - \lambda < 0\)、右导数 \(L'(0) + \lambda > 0\),此时 \(w = 0\) 为 \(J_1\) 的一个极小值点。

也就是说,即使 \(L\) 不在 \(w = 0\) 处取得极小值(\(L'(0) \neq 0\)),我们也能够通过调节 \(\lambda\) 将损失函数的极小值点“转移”到 \(w = 0\)。

再来看 L2 正则化时的情况,\(J_2\) 在 \(w = 0\) 处的导数为:

\[J_2'(0) = [L'(w) + 2 \lambda w]_{w = 0} = L'(0)
\]

由此可见,如果 \(L\) 不在 \(w = 0\) 处取得极小值(\(L'(0) \neq 0\)),那么加入 L2 正则项后仍然不可能在 \(w = 0\) 处取得极小值。

总结:L1 正则化能将损失函数的极小值点“转移”到 \(w = 0\) 处,而 L2 正则化无论如何设置 \(\lambda\) 都达不到这样的效果。

相关资料:

为什么 L1 正则化能做特征选择而 L2 正则化不能的更多相关文章

  1. 机器学习中的L1、L2正则化

    目录 1. 什么是正则化?正则化有什么作用? 1.1 什么是正则化? 1.2 正则化有什么作用? 2. L1,L2正则化? 2.1 L1.L2范数 2.2 监督学习中的L1.L2正则化 3. L1.L ...

  2. 机器学习中L1,L2正则化项

    搞过机器学习的同学都知道,L1正则就是绝对值的方式,而L2正则是平方和的形式.L1能产生稀疏的特征,这对大规模的机器学习灰常灰常重要.但是L1的求解过程,实在是太过蛋疼.所以即使L1能产生稀疏特征,不 ...

  3. 4.机器学习——统计学习三要素与最大似然估计、最大后验概率估计及L1、L2正则化

    1.前言 之前我一直对于“最大似然估计”犯迷糊,今天在看了陶轻松.忆臻.nebulaf91等人的博客以及李航老师的<统计学习方法>后,豁然开朗,于是在此记下一些心得体会. “最大似然估计” ...

  4. 深入理解L1、L2正则化

    过节福利,我们来深入理解下L1与L2正则化. 1 正则化的概念 正则化(Regularization) 是机器学习中对原始损失函数引入额外信息,以便防止过拟合和提高模型泛化性能的一类方法的统称.也就是 ...

  5. L1正则化和L2正则化

    L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择 L2正则化可以防止模型过拟合(overfitting):一定程度上,L1也可以防止过拟合 一.L1正则化 1.L1正则化 需注意, ...

  6. 机器学习(二十三)— L0、L1、L2正则化区别

    1.概念  L0正则化的值是模型参数中非零参数的个数. L1正则化表示各个参数绝对值之和. L2正则化标识各个参数的平方的和的开方值. 2.问题  1)实现参数的稀疏有什么好处吗? 一个好处是可以简化 ...

  7. L0,L1,L2正则化浅析

    在机器学习的概念中,我们经常听到L0,L1,L2正则化,本文对这几种正则化做简单总结. 1.概念 L0正则化的值是模型参数中非零参数的个数. L1正则化表示各个参数绝对值之和. L2正则化标识各个参数 ...

  8. L1 与 L2 正则化

    参考这篇文章: https://baijiahao.baidu.com/s?id=1621054167310242353&wfr=spider&for=pc https://blog. ...

  9. 防止过拟合:L1/L2正则化

    正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在tr ...

  10. L1正则化与L2正则化的理解

    1. 为什么要使用正则化   我们先回顾一下房价预测的例子.以下是使用多项式回归来拟合房价预测的数据:   可以看出,左图拟合较为合适,而右图过拟合.如果想要解决右图中的过拟合问题,需要能够使得 $ ...

随机推荐

  1. requests请求超时尝试重连的3种方式

    参考文档 https://urllib3.readthedocs.io/en/latest/reference/urllib3.util.html#module-urllib3.util.retry ...

  2. 机器学习策略篇:详解单一数字评估指标(Single number evaluation metric)

    单一数字评估指标 无论是调整超参数,或者是尝试不同的学习算法,或者在搭建机器学习系统时尝试不同手段,会发现,如果有一个单实数评估指标,进展会快得多,它可以快速告诉,新尝试的手段比之前的手段好还是差.所 ...

  3. 最经典的TCP性能问题

    目录 问题描述 问题的原因 什么是delay ack 什么是Nagle算法 如果client启用Nagle,并且server端启用了delay ack会有什么后果呢? 再来看一个经典例子和数据分析 回 ...

  4. 【Azure Logic App】添加 Storage Account 来提升 Logic App 的性能

    文章原文:https://techcommunity.microsoft.com/t5/azure-integration-services-blog/scaling-logic-app-standa ...

  5. 【Azure 应用服务】azure function powershell 调用 New-AzADServicePrincipal -DisplayName $sp -PasswordCredential $spCred

    问题描述 powershell 调用New-AzADServicePrincipal -DisplayName $sp -PasswordCredential $spCred,出现如下错误: Reso ...

  6. 分布式事务框架seata入门

    一.简介 在近几年流行的微服务架构中,由于对服务和数据库进行了拆分,原来的一个单进程本地事务变成多个进程的本地事务,这时要保证数据的一致性,就需要用到分布式事务了.分布式事务的解决方案有很多,其中国内 ...

  7. [C++] epoll编写的echo服务端

    直接贴代码,代码是运行在Linux上面的,通过 g++ epoll.cpp编译 #include <sys/socket.h> #include <sys/epoll.h> # ...

  8. Codeforces Round 345 (Div. 1)A. Watchmen(容斥原理)

    A. Watchmen 当欧几里得距离和曼哈顿距离相等时,\(x1==x2||y1==y2\) 这两个条件满足其一.这和容斥原理一样,至少选择一个的条件. 我们可以计算xi,以及小于i之前的这些,这样 ...

  9. 记录: OpenAI中转代理API接口服务的使用

    由于OpenAI提供服务的地区列表里没有 China,因此想要方便使用OpenAI API的话就需要用到中转服务. 本文介绍的iDataRiver平台便提供这样的API,且比官方OpenAI还要便宜, ...

  10. 排查 dotNET Core 程序内存暴涨的问题

    0. 问题 新版本上线之后,发现内存猛涨,入站流量猛增,不清楚具体原因,部分接口提示 OOM 异常,随后 Pod 直接崩溃无限重启. 1. 准备 Pod 已经接入了 NewRelic 和 Graylo ...