数组对象

NumPy 最重要的一个特点是其 N 维数组对象 ndarray,它是一系列同类型数据的集合,从0 开始进行集合中元素的索引;ndarray 对象是用于存放同类型元素的多维数组,其中的每个元素在内存中都有相同存储大小的区域。

ndarray 内部由以下内容组成:

  • 一个指向数据(内存或内存映射文件中的一块数据)的指针。
  • 数据类型或(dtype),描述在数组中的固定大小值的格子。
  • 一个表示数组形状(shape)的元组,表示各维度大小的元组。
  • 一个跨度元组(stride),其中的整数指的是为了前进到当前维度下一个元素需要"跨过"的字节数。

ndarray 的内部结构:



跨度可以是负数,这样会使数组在内存中后向移动,切片中 obj[::-1]obj[:,::-1] 就是如此。

创建一个 ndarray 只需调用 NumPy 的 array 函数即可:

numpy.array(object, dtype = None, copy = True, order = None, subok = False, ndmin = 0)

参数说明:

名称 描述
object 数组或嵌套的数列
dtype 数组元素的数据类型,可选
copy 对象是否需要复制,可选
order 创建数组的样式,C为行方向,F为列方向,A为任意方向(默认)
subok 默认返回一个与基类类型一致的数组
ndmin 指定生成数组的最小维度

基本创建操作

In [1]: import numpy as np  #导入模块

#np.array()用于创建一维或多维数组
In [2]: x = np.array([1,4,2,5,3])
In [3]: x
Out[3]: array([1, 4, 2, 5, 3]) #Numpy要求数组必须包含同一类型的数据,如果类型不一致,将会向上转换(整型会转换成浮点型)
In [5]: np.array([3.14,4,2,3])
Out[5]: array([3.14, 4. , 2. , 3. ]) #dtype用于指定数据类型
In [6]: np.array([1,2,3,4],dtype='float64')
Out[6]: array([1., 2., 3., 4.]) #嵌套列表构成多维数组
In [7]: np.array([range(i,i+3) for i in [2,4,6]])
Out[7]:
array([[2, 3, 4],
[4, 5, 6],
[6, 7, 8]]) #numpy.asarray(a, dtype = None, order = None) 从已有的数组创建数组
In [16]: x = [1,2,3]
In [17]: a = np.asarray(x[:2]) In [18]: a
Out[18]: array([1, 2]) #创建一个长度为10的整数型数组,数组的值都是0
#numpy.zeros(shape, dtype = float, order = 'C或F')
In [2]: np.zeros(10,dtype=int)
Out[2]: array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) #创建一个3 * 5 的浮点型数组,数组的值都是1.
#numpy.ones(shape, dtype = None, order = 'C或F')
In [3]: np.ones((3,5),dtype=float)
Out[3]:
array([[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.]]) #创建一个3 * 5 的浮点型数组,数组的值都是3.14
In [4]: np.full((3,5),3.14)
Out[4]:
array([[3.14, 3.14, 3.14, 3.14, 3.14],
[3.14, 3.14, 3.14, 3.14, 3.14],
[3.14, 3.14, 3.14, 3.14, 3.14]]) #创建一个线性序列数组,从0开始,20结束,步长为2 [与内置的range函数类似]
In [5]: np.arange(0,20,2)
Out[5]: array([ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18]) #创建一个3*3的,在0~1均匀分布的随机数组成的数组
In [7]: np.random.normal(0,1,(3,3))
Out[7]:
array([[ 0.97341698, 0.88933442, 0.22194868],
[-1.71214362, 0.45802193, -1.2897651 ],
[-0.09084611, 1.18721238, -1.16374604]]) #创建一个3*3的,在[0,10)随机整数组成的数组
In [8]: np.random.randint(0,10,(3,3))
Out[8]:
array([[9, 4, 5],
[7, 6, 1],
[0, 6, 0]]) #创建一个3*3的单位矩阵
In [9]: np.eye(3)
Out[9]:
array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]]) #创建一个由3个整数型组成的未初始化的数组
#数组的值是内存空间中的任意值
#numpy.empty(shape, dtype = float, order = 'C或F')
In [10]: np.empty(3)
Out[10]: array([1., 1., 1.]) #复数
In [2]: a = np.array([1,2,3],dtype = complex)
In [3]: a
Out[3]: array([1.+0.j, 2.+0.j, 3.+0.j]) #创建一个对数数列,等比
#np.logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None)
In [12]: a = np.logspace(0,9,num=10)
In [13]: a
Out[13]:
array([1.e+00, 1.e+01, 1.e+02, 1.e+03, 1.e+04, 1.e+05, 1.e+06, 1.e+07,
1.e+08, 1.e+09]) In [14]: b = np.logspace(0,9,10,base=2)
In [15]: b
Out[15]: array([ 1., 2., 4., 8., 16., 32., 64., 128., 256., 512.]) #创建一个在0~1之间均匀取5个值的数组,等差
#np.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)
In [6]: np.linspace(0,1,5)
Out[6]: array([0. , 0.25, 0.5 , 0.75, 1. ]) #numpy.frombuffer(buffer, dtype = float, count = -1, offset = 0) 接受 buffer 输入参数,以流的形式读入转化成 ndarray 对象。
#buffer 是字符串的时候,Python3 默认 str 是 Unicode 类型,所以要转成 bytestring 在原 str 前加上 b。
In [21]: s = b'Hello'
In [22]: a = np.frombuffer(s,dtype='S1')
In [25]: a
Out[25]: array([b'H', b'e', b'l', b'l', b'o'], dtype='|S1') #numpy.fromiter(iterable, dtype, count=-1)从可迭代对象中建立 ndarray 对象,返回一维数组。
In [26]: list = range(5)
In [27]: it = iter(list) In [28]: x = np.fromiter(it,dtype=float)
In [29]: x
Out[29]: array([0., 1., 2., 3., 4.])

Numpy的数组对象的更多相关文章

  1. Numpy数组对象的操作-索引机制、切片和迭代方法

    前几篇博文我写了数组创建和数据运算,现在我们就来看一下数组对象的操作方法.使用索引和切片的方法选择元素,还有如何数组的迭代方法. 一.索引机制 1.一维数组 In [1]: a = np.arange ...

  2. Python数据分析学习(二):Numpy数组对象基础

    1.1数组对象基础 .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { bord ...

  3. Numpy学习一:ndarray数组对象

    NumPy是Python的一个高性能科学计算和数据分析基础库,提供了功能强大的多维数组对象ndarray.jupyter notebook快速执行代码的快捷键:鼠标点击选中要指定的代码框,Shift ...

  4. numpy 数组对象

    numpy 数组对象NumPy中的ndarray是一个多维数组对象,该对象由两部分组成:实际的数据,描述这些数据的元数据# eg_v1 import numpy as np a = np.arange ...

  5. Numpy的ndarry:一种多维数组对象

    Numpy的ndarry:一种多维数组对象 Numpy最重要的一个特点就是其N维数组对象(即ndarry),该对象是一个快速而灵活的大数据集容器.你可以利用这种数组对整块数据执行一些数学运算,其语法跟 ...

  6. [转]Numpy中矩阵对象(matrix)

    numpy模块中的矩阵对象为numpy.matrix,包括矩阵数据的处理,矩阵的计算,以及基本的统计功能,转置,可逆性等等,包括对复数的处理,均在matrix对象中. class numpy.matr ...

  7. NumPy:数组计算

    一.MumPy:数组计算 1.NumPy是高性能科学计算和数据分析的基础包.它是pandas等其他各种工具的基础.2.NumPy的主要功能: ndarray,一个多维数组结构,高效且节省空间 无需循环 ...

  8. NumPy 迭代数组

    NumPy 迭代数组 NumPy 迭代器对象 numpy.nditer 提供了一种灵活访问一个或者多个数组元素的方式. 迭代器最基本的任务的可以完成对数组元素的访问. 接下来我们使用 arange() ...

  9. 一、Numpy基础--数组

    (一)Numpy数组对象 Numpy中的nadrray是一个多维数组对象,该对象由两部分组成: 实际的数据 描述这些数据的元数据 大部分的数组操作仅仅修改元数据部分,而不改变底层的实际数据. 数组的数 ...

  10. Numpy用于数组数据的存储和读取

    Python的Numpy模块可用于存储和读取数据: 1.将一个数组存储为二进制文件 Numpy.save:将一个数组以.npy的格式保存为二进制文件 调用格式:numpy.save(file, arr ...

随机推荐

  1. RabbitMQ和RPC

    消息队列 消息队列中间件 (Message Queue Middleware,简称 MQ) 是指利用高效可靠的消息传递机制进行与平台无关的数据交流,它可以在分布式环境下扩展进程间的数据通信,并基于数据 ...

  2. [Node] nvm 安装 node 和 npm

    Node JS 安装 安装 node version manager (nvm) Windows: https://github.com/coreybutler/nvm-windows/release ...

  3. Avalonia 跨平台框架中如何以正确的姿势使用 OpenGL ES 渲染。

    前言 这是一篇很水的文章,没有任何技术含量,在 Github 已经有很多人对 Avalonia 的 OpenGL ES 支持进行了讨论,但是我还是想写一篇文章来记录一下我是如何在 Avalonia 中 ...

  4. [App Service for Windows]通过 KUDU 查看 Tomcat 配置信息

    问题描述 在App Service 中选择了Java Tomcat后,如何查看Azure App Service的Tomcat的配置信息呢? 问题解答 可以通过以下的 3个步骤查看: 第一步:登录 K ...

  5. 【Azure Logic App】使用Outlook.com发送邮件遇到429报错

    问题描述 在Logic App中使用 Outlook.com组件发送邮件,遇见了outlook connection报429的错误 {"error":{"code&quo ...

  6. 【Azure 应用服务】App Server 部署后,Docker报错,找不到8080端口

    问题描述 App Service for Container.  Docker Image 推送到ACR(向 Azure 容器注册表), 配置App Service并部署成功了.查看Docker日志( ...

  7. Java 封装+构造器+this 小测试

    1 package com.bytezero.account; 2 3 4 public class Account 5 { 6 private int id; //账号 7 private doub ...

  8. 借助 Terraform 功能协调部署 CI/CD 流水线-Part 1

    在当今快节奏的开发环境中,实现无缝.稳健的 CI/CD 流水线对于交付高质量软件至关重要.在本文中,我们将向您介绍使用 Bitbucket Pipeline.ArgoCD GitOps 和 AWS E ...

  9. ConcurrentHashMap的put方法

    使用JDK8 源码: public V put(K key, V value) { return putVal(key, value, false); } /** Implementation for ...

  10. (一)Git 学习之为什么要学习 Git

    一.版本控制 1.1 何为版本控制 版本控制(Revision control)是一种在开发的过程中用于管理我们对文件.目录或工程等内容的修改历史,方便查看更改历史记录.备份,以便恢复以前的版本的软件 ...