树链剖分 | 洛谷 P4114 Qtree1
前言
题目链接:洛谷 P4114 Qtree1
前置知识:树链剖分
题意
给定一棵树,有修改边权和查询两点之间边权最大值两种操作,对于每个查询输出结果。
解析
已经在前置博客里提到,树链剖分 可以将树上的任意一条路径划分成不超过 \(O(\log n)\) 条连续的链,保证划分出的每条链上的节点 DFS 序 连续。这大大方便了我们维护点权,但该如何维护边权呢?
这里就要介绍一种重要的思想——化边权为点权。
从 \(1\) 号点开始,遍历一遍整棵树,对于每条边,把边权赋在后遍历到的那个点,也就是 \(dep\) 更大的点上。这样可以保证,在跳祖先的过程中,必然能够不重不漏地计算到每个边权。若把边权赋在 \(dep\) 更大的点上则不然。最后就是简单的 树剖+线段树 维护最大值的过程。
查询操作不用多说,就是树剖的常规操作,不断跳祖先查询最大值即可。
修改操作就比较复杂了,要找到第 \(i\) 条边上 \(dep\) 较大的点(因为边权存在这个点上),然后使用线段树单点修改。
这里要注意,使用 链式前向星 存图会比 vector 邻接表方便更多,因为我们要找到输入的第 \(i\) 条边。
代码
// Problem: P4114 Qtree1
// Contest: Luogu
// URL: https://www.luogu.com.cn/problem/P4114
// Memory Limit: 500 MB
// Time Limit: 1000 ms
//
// Powered by CP Editor (https://cpeditor.org)
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int N = 100005;
int n, u, v, w, cnt, tot, a, b;
int head[N], top[N], dep[N], dfn[N], heavy[N], son[N], val[N], f[N];
string s;
struct edge
{
int from, to, val, nxt;
}e[N << 1];
inline void add_edge(int u, int v, int w)
{
e[++tot] = {u, v, w, head[u]}, head[u] = tot;
}
inline void dfs1(int u, int fa)
{
dep[u] = dep[fa] + 1, f[u] = fa, son[u] = 1;
for(int i = head[u]; i; i = e[i].nxt)
{
int v = e[i].to;
if(v == fa) continue;
dfs1(v, u);
son[u] += son[v];
if(son[heavy[u]] <= son[v]) heavy[u] = v;
}
return;
}
inline void dfs2(int u, int tp)
{
top[u] = tp, dfn[u] = ++cnt;
if(!heavy[u]) return;
dfs2(heavy[u], tp);
for(int i = head[u]; i; i = e[i].nxt)
{
int v = e[i].to;
if(v == f[u] || v == heavy[u]) continue;
dfs2(v, v);
}
return;
}
struct node
{
int l, r, maxi;
}tree[N << 2];
inline void push_up(int x)
{
tree[x].maxi = max(tree[x << 1].maxi, tree[x << 1 | 1].maxi);
}
inline void build(int l, int r, int x)
{
tree[x] = {l, r, 0};
if(l == r) return (void) (tree[x].maxi = val[l]);
int mid = l + r >> 1;
build(l, mid, x << 1);
build(mid + 1, r, x << 1 | 1);
push_up(x);
return;
}
inline void update(int pos, int k, int x)
{
if(tree[x].l == tree[x].r && tree[x].r == pos)
return (void) (tree[x].maxi = k);
int mid = tree[x].l + tree[x].r >> 1;
if(pos <= mid) update(pos, k, x << 1);
if(pos > mid) update(pos, k, x << 1 | 1);
push_up(x);
return;
}
inline int query(int l, int r, int x)
{
if(l <= tree[x].l && tree[x].r <= r) return tree[x].maxi;
int mid = tree[x].l + tree[x].r >> 1, ans = 0;
if(l <= mid) ans = max(ans, query(l, r, x << 1));
if(r > mid) ans = max(ans, query(l, r, x << 1 | 1));
return ans;
}
inline int ask(int x, int y)
{
int ans = 0;
while(top[x] != top[y])
{
if(dep[top[x]] < dep[top[y]]) swap(x, y);
ans = max(ans, query(dfn[top[x]], dfn[x], 1));
x = f[top[x]];
}
if(dfn[x] > dfn[y]) swap(x, y);
return max(ans, query(dfn[x] + 1, dfn[y], 1));
}
signed main()
{
ios :: sync_with_stdio(false);
cin >> n;
for(int i = 1; i < n; i++)
{
cin >> u >> v >> w;
add_edge(u, v, w);
add_edge(v, u, w);
}
dfs1(1, 0);
dfs2(1, 1);
for(int i = 1; i <= tot; i += 2)
{
int u = e[i].from, v = e[i].to;
if(dep[u] < dep[v]) swap(u, v);
val[dfn[u]] = e[i].val;
}
build(1, n, 1);
while(cin >> s)
{
if(s == "DONE") break;
cin >> a >> b;
if(s == "CHANGE")
{
a = a * 2 - 1;
int u = e[a].from, v = e[a].to;
if(dep[u] < dep[v]) swap(u, v);
update(dfn[u], b, 1);
}
else cout << (a == b ? 0 : ask(a, b)) << '\n';
}
return 0;
}
树链剖分 | 洛谷 P4114 Qtree1的更多相关文章
- AC日记——【模板】树链剖分 洛谷 P3384
题目描述 如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节点的值都加上z 操作2: 格式 ...
- 洛谷 P4114 Qtree1 树链剖分
目录 题面 题目链接 题目描述 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例: 输出样例: 说明 说明 思路 Change Query AC代码 总结 题面 题目链接 P4114 Qt ...
- 洛谷P4114 Qtree1
题目描述 给定一棵\(n\)个节点的树,有两个操作: \(CHANGE\) \(i\) \(t_i\) 把第\(i\)条边的边权变成\(t_i\) \(QUERY\) \(a\) \(b\) 输出从\ ...
- 洛谷P4114 Qtree1(树链剖分+线段树)
传送门 LCT秒天秒地用什么树剖 这题可以算是树剖的比较裸的题目了 把每一条边的权值下放到他两边的点中深度较深的那个 然后直接用树剖+线段树带进去乱搞就可以了 //minamoto #include& ...
- 洛谷 - P4114 - Qtree1 - 重链剖分
https://www.luogu.org/problem/P4114 维护边权的话,用深度大的点表示这条边(可以遍历一边边询问两端深度,这样不需要修改dfs1,也可以在dfs1的时候向下走的同时把边 ...
- 洛谷 P4114 Qtree1
Qtree系列都跟树有着莫大的联系,这道题当然也不例外 我是题面 读完题,我们大概就知道了,这道题非常简单,可以说是模板题.树剖+线段树轻松解决 直接看代码吧 #include<algorith ...
- 洛谷 P3384 【模板】树链剖分
树链剖分 将一棵树的每个节点到它所有子节点中子树和(所包含的点的个数)最大的那个子节点的这条边标记为"重边". 将其他的边标记为"轻边". 若果一个非根节点的子 ...
- 树链剖分详解(洛谷模板 P3384)
洛谷·[模板]树链剖分 写在前面 首先,在学树链剖分之前最好先把 LCA.树形DP.DFS序 这三个知识点学了 emm还有必备的 链式前向星.线段树 也要先学了. 如果这三个知识点没掌握好的话,树链剖 ...
- ⌈洛谷1505⌋⌈BZOJ2157⌋⌈国家集训队⌋旅游【树链剖分】
题目链接 [洛谷] [BZOJ] 题目描述 Ray 乐忠于旅游,这次他来到了T 城.T 城是一个水上城市,一共有 N 个景点,有些景点之间会用一座桥连接.为了方便游客到达每个景点但又为了节约成本,T ...
- BZOJ2243 洛谷2486 [SDOI2011]染色 树链剖分
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2243 题目传送门 - 洛谷2486 题意概括 一棵树,共n个节点. 让你支持以下两种操作,共m次操 ...
随机推荐
- 【GiraKoo】CMake提示could not find any instance of Visual Studio
CMake提示could not find any instance of Visual Studio. 原因 此种情况是由于默认的CMake工具不是Visual Studio提供的版本导致的. 解决 ...
- centos linux系统安装详解
打开vmware,版本差异区别不大 选择创建新的虚拟机 选择典型,是默认选项不用改,点击下一步 选择稍后安装操作系统(默认选项不用改),点击下一步 选择linux,并且版本改为centos 64位,点 ...
- kali系统安装redis步骤
环境: 攻击机:Kali 5.16.0-kali7-amd64 192.168.13.78 靶机: Kali 5.16.0-kali7-amd64 192.168.13.94 安装 ...
- 火爆,Github标星240K的编程学习路线图,适合所有程序员!
推荐一个涵盖开发.运维.产品设计的学习路线图,在Github已经start超过240K,包括各门编程语言! 一.涵盖的路线图 该项目涵盖了非常全面的学习路线图: 前端路线图 后端路线图 ASP.NET ...
- windows笔记本极致省电指南
用到了三个软件:parkcontrol,process lasso,quickCPU parkcontrol -调整CPU的运行核心和频率,可以设置离电的时候关闭一些CPU核心数,以达到省电的目的 插 ...
- git推送时被拒绝,发现class文件被人上传到仓库的解决办法
写好的代码commit之后,想要推送到远端,结果发现有同事提交了class文件 这时候我们需要执行以下指令 git stash git pull git stash pop 原理:先把commit的东 ...
- Java求数组元素的最大值和最小值
代码如下: public static void main(String[] args) { int [] a = {1,2,3,88,2,90}; int max = a[0]; int min = ...
- 字符串加密DES
提前关于加密的方式,我目前知道的有MD5,DES等等.今天写一下使用DES的代码,方便下次使用. package mocha.framework.hrbase.rest.utils; import j ...
- 【Shell】字符串
单引号和双引号 shell 字符串可以用单引号 '',也可以用双引号 "",也可以不用引号. 单引号的特点 单引号里不识别变量 单引号里不能出现单独的单引号(使用转义符也不行),但 ...
- 【原创】xenomai UDD介绍与UDD用户态驱动示例
目录 xenomai UDD与用户态驱动示例 一.UDD介绍 二.UDD原理及框架 1. 内存映射 2. 中断处理 UDD与UIO的区别 3. linux UIO与xenomai UDD框架对比 3. ...