Note:[ wechat:Y466551 | 可加勿骚扰,付费咨询 ]

论文信息

论文标题:PERL: Pivot-based Domain Adaptation for Pre-trained Deep Contextualized Embedding Models
论文作者:Eyal Ben-David、Carmel Rabinovitz、Roi Reichart
论文来源:2020 TACL
论文地址:download 
论文代码:download
视屏讲解:click

1 介绍

  动机:之前 Pivot-based 的方法只利用了来自源域的标记数据和来自源域和目标域的未标记数据,而忽略了合并不一定来自这些域的大量未标记语料库;

2 相关

  Pivot features are:

    • Frequent in the unlabeled data from the source and target domains;
    • Among those frequent features, pivot features are the ones whose mutual information with the task label according to source domain labeled data crosses a pre-defined threshold. Features that do not meet the above two criteria form the non-pivot feature subset;

3 方法

模型框架

  

Step 1

  Figure 1a:使用一个强大的预训练的 CWE 模型初始化 PERL 编码器,这里的 CWE 模型要能实现 MLM、NSP 任务;

Step 2

  使用 不同的掩码概率对 $\text{pivot}$ 和 $\text{non-pivot}$ 进行 $\text{mask}$ ,并预测 $\text{mask}$ 的词是否是 $\text{pivot}$ ;

    $p\left(y_{i}=j\right)=\frac{e^{f\left(h_{i}\right) \cdot W_{j}}}{\sum_{k=1}^{|P|} e^{f\left(h_{i}\right) \cdot W_{k}}+e^{f\left(h_{i}\right) \cdot W_{\text {none }}}}$
  其中,$P$ 是 $\text{pivot feature}$ 的集合;

Step 3

  在对来自源域的标记数据进行训练和对目标域进行测试时,每个输入文本首先由编码器表示,然后被输入给分类网络。因为我们的工作重点是表示学习,所以分类网络保持简单,由一个卷积层,然后是一个平均池化层和一个线性层组成。当训练下游任务时,编码器的权重会被冻结。

4 实验

Domain adaptation results

  

论文解读(PERL)《PERL: Pivot-based Domain Adaptation for Pre-trained Deep Contextualized Embedding Models》的更多相关文章

  1. 论文解读(CAN)《Contrastive Adaptation Network for Unsupervised Domain Adaptation》

    论文信息 论文标题:Contrastive Adaptation Network for Unsupervised Domain Adaptation论文作者:Guoliang Kang, Lu Ji ...

  2. [论文阅读笔记] Structural Deep Network Embedding

    [论文阅读笔记] Structural Deep Network Embedding 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 现有的表示学习方法大多采用浅层模型,这可能不能 ...

  3. 论文解读(CDCL)《Cross-domain Contrastive Learning for Unsupervised Domain Adaptation》

    论文信息 论文标题:Cross-domain Contrastive Learning for Unsupervised Domain Adaptation论文作者:Rui Wang, Zuxuan ...

  4. 论文解读(CDTrans)《CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation》

    论文信息 论文标题:CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation论文作者:Tongkun Xu, Weihu ...

  5. 论文解读(PCL)《Probabilistic Contrastive Learning for Domain Adaptation》

    论文信息 论文标题:Probabilistic Contrastive Learning for Domain Adaptation论文作者:Junjie Li, Yixin Zhang, Zilei ...

  6. 论文解读(ToAlign)《ToAlign: Task-oriented Alignment for Unsupervised Domain Adaptation》

    论文信息 论文标题:ToAlign: Task-oriented Alignment for Unsupervised Domain Adaptation论文作者:Guoqiang Wei, Cuil ...

  7. 迁移学习(SPI)《Semi-Supervised Domain Adaptation by Similarity based Pseudo-label Injection》

    论文信息 论文标题:Semi-Supervised Domain Adaptation by Similarity based Pseudo-label Injection论文作者:Abhay Raw ...

  8. 论文阅读 | A Curriculum Domain Adaptation Approach to the Semantic Segmentation of Urban Scenes

    paper链接:https://arxiv.org/pdf/1812.09953.pdf code链接:https://github.com/YangZhang4065/AdaptationSeg 摘 ...

  9. 【论文笔记】Domain Adaptation via Transfer Component Analysis

    论文题目:<Domain Adaptation via Transfer Component Analysis> 论文作者:Sinno Jialin Pan, Ivor W. Tsang, ...

  10. Domain Adaptation论文笔记

    领域自适应问题一般有两个域,一个是源域,一个是目标域,领域自适应可利用来自源域的带标签的数据(源域中有大量带标签的数据)来帮助学习目标域中的网络参数(目标域中很少甚至没有带标签的数据).领域自适应如今 ...

随机推荐

  1. Selenium - 浏览器配置(1) - 忽略证书错误提示

    Selenium - 浏览器配置 忽略证书错误提示 有时候我们访问一些地址,会提示证书私密连接告警信息如下: 如果我们每次要点击高级来忽略私密连接,那就很麻烦: 在谷歌浏览器可以增加忽略证书错误问题, ...

  2. Django-5:前端模板路径设定TEMPLATES DIRS和调用

    前端模板路径设定:'DIRS': [BASE_DIR / 'templates'] TEMPLATES = [ { 'BACKEND': 'django.template.backends.djang ...

  3. 如何将jq动画做出高帧的感觉?(丝滑顺畅)

    前言 我最近在一点一点研究我 博客园 的前端代码,算是边敲边学吧,还算是挺有意思的. 是这样的,之前见过一个效果,就是先显示博客的背景,然后博客主界面缓缓的上升到正确位置,于是乎,干他!开撸代码! 各 ...

  4. AcWing 278. 数字组合

    给定 N 个正整数 A1,A2,-,AN,从中选出若干个数,使它们的和为 M,求有多少种选择方案. 输入格式 第一行包含两个整数 N 和 M. 第二行包含 N 个整数,表示 A1,A2,-,AN. 输 ...

  5. Vue 异步通信Axios

    使用Axios实现异步通信需要先导入cdn: <script src="https://unpkg.com/axios@1.4.0/dist/axios.min.js"> ...

  6. Python相关镜像

    Python相关镜像 (1) pip使用说明 对于Python开发用户来讲,我们会经常使用pip安装软件包.但国外的源下载速度实在太慢,浪费时间且经常出现下载后安装出错问题.所以把PIP安装源替换成国 ...

  7. .NET周报 【5月第4期 2023-05-27】

    国内文章 C#使用词嵌入向量与向量数据库为大语言模型(LLM)赋能长期记忆实现私域问答机器人落地之openai接口平替 https://www.cnblogs.com/gmmy/p/17430613. ...

  8. Spring Boot 3.1中如何整合Spring Security和Keycloak

    在今年2月14日的时候,Keycloak 团队宣布他们正在弃用大多数 Keycloak 适配器.其中包括Spring Security和Spring Boot的适配器,这意味着今后Keycloak团队 ...

  9. 如何获取 C#程序 内核态线程栈

    一:背景 1. 讲故事 在这么多的案例分析中,往往会发现一些案例是卡死在线程的内核态栈上,但拿过来的dump都是用户态模式下,所以无法看到内核态栈,这就比较麻烦,需要让朋友通过其他方式生成一个蓝屏的d ...

  10. flutter 的 in_app_web_view实现下载功能

    flutter与前端交互,利用in_app_web_view实现下载功能: 首先下载库,终端输入 flutter pub add flutter_inappwebview 之后导出 import 'p ...