示例python 批量操作excel统计销售榜品牌及销售额
示例统计销售榜品牌及销售额
import pandas as pd
import numpy as np
import os os.chdir('F:\\50mat\源数据1000张表格') name = '户外服装&滑雪衣.xlsx'
df = pd.read_excel(name)
df.head()
打印结果
日期 转化率 访客数 三级类目 客单价 品牌
0 2019-08 0.036466 837 滑雪衣 3887.646034 品牌-5
1 2019-08 0.006110 9951 滑雪衣 1890.920192 品牌-7
2 2019-08 0.008279 11067 滑雪衣 1001.541028 品牌-19
3 2019-08 0.003647 25296 滑雪衣 986.192182 品牌-17
4 2019-08 0.006012 5053 滑雪衣 2818.957816 品牌-14
df['日期'].unique()
打印结果
array(['2019-08', '2019-07', '2019-06', '2019-05', '2019-04', '2019-03',
'2019-02', '2019-01', '2018-12', '2018-11', '2018-10', '2018-09'],
dtype=object)
一:操作单表
销售额
df['销售额'] = df['访客数'] * df['转化率'] * df['客单价'] df.head()
打印结果
日期 转化率 访客数 三级类目 客单价 品牌 销售额
0 2019-08 0.036466 837 滑雪衣 3887.646034 品牌-5 118657.898127
1 2019-08 0.006110 9951 滑雪衣 1890.920192 品牌-7 114977.898920
2 2019-08 0.008279 11067 滑雪衣 1001.541028 品牌-19 91761.540049
3 2019-08 0.003647 25296 滑雪衣 986.192182 品牌-17 90969.935091
4 2019-08 0.006012 5053 滑雪衣 2818.957816 品牌-14 85634.834594
二:汇总销售额
# 汇总销售额
df_sum = df.groupby('品牌')['销售额'].sum().reset_index()
df_sum.head()
打印结果
品牌 销售额
0 品牌-1 5.479539e+06
1 品牌-10 2.913271e+06
2 品牌-11 2.298716e+06
3 品牌-12 2.821199e+06
4 品牌-13 3.256508e+06
添加行业标签
# 添加行业标签
df_sum['行业'] = name.replace('.xlsx','') df_sum.head()
打印结果
品牌 销售额 行业
0 品牌-1 5.479539e+06 户外服装&滑雪衣
1 品牌-10 2.913271e+06 户外服装&滑雪衣
2 品牌-11 2.298716e+06 户外服装&滑雪衣
3 品牌-12 2.821199e+06 户外服装&滑雪衣
4 品牌-13 3.256508e+06 户外服装&滑雪衣
三:操作所有表格
import time start = time.time() result = pd.DataFrame() for name in os.listdir():
df = pd.read_excel(name)
df['销售额'] = df['访客数'] * df['转化率'] * df['客单价']
df_sum = df.groupby('品牌')['销售额'].sum().reset_index()
df_sum['行业标签'] = name.replace('.xlsx','') result = pd.concat([result,df_sum]) final = result.groupby('品牌')['销售额'].sum().reset_index().sort_values('销售额', ascending = False) end = time.time() print('操作用时:{}s'.format(end-start))
操作用时:6.295360088348389s
# 将科学计算法,改为两位小数
pd.set_option('display.float_format', lambda x :'%.2f' % x) print(final.head())
final.describe()
打印结果
品牌 销售额
15 品牌-5 1226223640.73
8 品牌-17 1195280571.60
2 品牌-11 1151829215.73
4 品牌-13 1150687029.66
3 品牌-12 1143519788.23
销售额
count 20.00
mean 1084854125.76
std 63774592.90
min 979272391.61
25% 1050719265.66
50% 1071804742.94
75% 1118990465.22
max 1226223640.73
七:数据分析模型
# 表格处理示例:销售榜品牌及销售额 import pandas as pd
import numpy as np
import os
import time
os.chdir('F:\\50mat\源数据1000张表格') name = '户外服装&滑雪衣.xlsx'
df = pd.read_excel(name) result = pd.DataFrame() for name in os.listdir():
df = pd.read_excel(name)
df['销售额'] = df['访客数'] * df['转化率'] * df['客单价']
df_sum = df.groupby('品牌')['销售额'].sum().reset_index()
df_sum['行业标签'] = name.replace('.xlsx','') result = pd.concat([result,df_sum]) final = result.groupby('品牌')['销售额'].sum().reset_index().sort_values('销售额', ascending = False) # 将科学计算法,改为两位小数
pd.set_option('display.float_format', lambda x :'%.2f' % x) print(final.head(10))
加油:一只阿木木
示例python 批量操作excel统计销售榜品牌及销售额的更多相关文章
- 使用Python处理Excel文件的一些代码示例
笔记:使用Python处理Excel文件的一些代码示例,以下代码来自于<Python数据分析基础>一书,有删改 #!/usr/bin/env python3 # 导入读取Excel文件的库 ...
- python制作简单excel统计报表3之将mysql数据库中的数据导入excel模板并生成统计图
python制作简单excel统计报表3之将mysql数据库中的数据导入excel模板并生成统计图 # coding=utf-8 from openpyxl import load_workbook ...
- python制作简单excel统计报表2之操作excel的模块openpyxl简单用法
python制作简单excel统计报表2之操作excel的模块openpyxl简单用法 # coding=utf-8 from openpyxl import Workbook, load_workb ...
- Python导出Excel为Lua/Json/Xml实例教程(二):xlrd初体验
Python导出Excel为Lua/Json/Xml实例教程(二):xlrd初体验 相关链接: Python导出Excel为Lua/Json/Xml实例教程(一):初识Python Python导出E ...
- python操作excel表格(xlrd/xlwt)
最近遇到一个情景,就是定期生成并发送服务器使用情况报表,按照不同维度统计,涉及python对excel的操作,上网搜罗了一番,大多大同小异,而且不太能满足需求,不过经过一番对源码的"研究&q ...
- Python处理Excel(转载)
1. Python 操作 Excel 的函数库 我主要尝试了 3 种读写 Excel 的方法: 1> xlrd, xlwt, xlutils: 这三个库的好处是不需要其它支持,在任何操作系统上都 ...
- python处理Excel - xlrd xlwr openpyxl
python处理Excel - xlrd xlwr openpyxl 1 xlrd和xlwt Todo: 使用xlrd和xlwt读写Excel文件的方法和示例代码,待续... 参考链接: Creati ...
- 【转】python操作excel表格(xlrd/xlwt)
[转]python操作excel表格(xlrd/xlwt) 最近遇到一个情景,就是定期生成并发送服务器使用情况报表,按照不同维度统计,涉及python对excel的操作,上网搜罗了一番,大多大同小异, ...
- Python实现代码统计工具——终极加速篇
Python实现代码统计工具--终极加速篇 声明 本文对于先前系列文章中实现的C/Python代码统计工具(CPLineCounter),通过C扩展接口重写核心算法加以优化,并与网上常见的统计工具做对 ...
- Python 利用Python操作excel表格之xlwt介绍
利用Python操作excel表格之xlwt介绍 by:授客 QQ:1033553122 直接上代码 案例1 #!/usr/bin/env python # -*- coding:utf-8 ...
随机推荐
- Linux 更新网络时间
下载包 yum install -y ntpdate 同步网络时间 ntpdate 0.asia.pool.ntp.org 若上面的时间服务器不可用,也可以改用如下服务器进行同步: time.nist ...
- Kafka消费端抛出异常Offset commit cannot be completed since the consumer is not part of an active group for auto partition assignment; it is likely that the consumer was kicked out of the group的解决方案
总结/朱季谦 在一次测试Kafka通过consumer.subscribe()指定偏移量Offset消费过程中,因为设置参数不当,出现了一个异常提示-- [2024-01-04 16:06:32.55 ...
- PixiJS源码分析系列: 第一章 从最简单的例子入手
从最简单的例子入手分析 PixiJS 源码 我一般是以使用角度作为切入点查看分析源码,例子中用到什么类,什么方法,再入源码. 高屋建瓴的角度咱也做不到啊,毕竟水平有限 pixijs 的源码之前折腾了半 ...
- 测试人必会 K8S 操作之 Dashboard
在云计算和微服务架构的时代,Kubernetes (K8S) 已成为管理容器化应用的标准.然而,对于许多新手来说,K8S 的操作和管理常常显得复杂而神秘.特别是,当你第一次接触 K8S Dashboa ...
- 基于Docker安装项目管理工具禅道
禅道是通用的项目管理软件 完整支持敏捷项目模型.瀑布项目模型.看板模型 内置项目集.产品.项目和执行四个管理框架 支持CMMI标准的落地实施 下载镜像 docker pull easysoft/zen ...
- git push origin master和git push的区别
1.git push origin master 指定远程仓库名和分支名. 2.git push 不指定远程仓库名和分支名. 3. 这两者的区别:git push是git push origin ma ...
- Odoo 增加web后端的响应能力
实践环境 Odoo 14.0-20221212 (Community Edition) web_responsive-14.0.1.2.1.zip https://apps.odoo.com/apps ...
- scratch编程作品-《滚动的物理小球》
程序说明: <滚动的物理小球>是一款基于Scratch平台开发的小游戏.在这个游戏中,玩家通过按左右方向键来控制一个小球在屏幕上的左右移动.小球在移动过程中,完全遵循物理引擎的规则,如加速 ...
- 【Zookeeper】Re02 CuratorAPI
Curator,提供给Java操作ZK的API组件: 需要的组件依赖: <!-- https://mvnrepository.com/artifact/org.apache.curator/cu ...
- nvidia公司官方迁移学习套件 —— NVIDIA TAO Toolkit
资料: https://blogs.nvidia.com/blog/what-is-transfer-learning/ 相关: https://developer.nvidia.com/tao-to ...