2179: FFT快速傅立叶

Time Limit: 10 Sec  Memory Limit: 259 MB
Submit: 2923  Solved: 1498
[Submit][Status][Discuss]

Description

给出两个n位10进制整数x和y,你需要计算x*y。

Input

第一行一个正整数n。
第二行描述一个位数为n的正整数x。
第三行描述一个位数为n的正整数y。

Output

输出一行,即x*y的结果。

Sample Input

1
3
4

Sample Output

12

数据范围:
n<=60000

HINT

Source

[Submit][Status][Discuss]

FFT模板

 #include <bits/stdc++.h>

 using namespace std;

 const int maxn = ;
const double pi = acos(-);
typedef complex<double> Complex; int n, m, len;
int ans[maxn];
int rev[maxn];
char str[maxn]; Complex a[maxn];
Complex b[maxn]; inline void calculateFFT(Complex *c, double f)
{
for (int i = ; i < n; ++i)
if (i < rev[i])swap(c[i], c[rev[i]]); for (int i = ; i < n; i <<= )
{
Complex wn(cos(pi/i), f*sin(pi/i)); for (int j = ; j < n; j += (i << ))
{
Complex wk(, ); for (int k = ; k < i; ++k, wk *= wn)
{
Complex x = c[j + k];
Complex y = c[i + j + k] * wk;
c[j + k] = x + y;
c[i + j + k] = x - y;
}
}
}
} signed main(void)
{
scanf("%d", &n); scanf("%s", str); for (int i = ; i < n; ++i)
a[i] = str[n - i - ] - ''; scanf("%s", str); for (int i = ; i < n; ++i)
b[i] = str[n - i - ] - ''; m = n << ;
for (n = ; n < m; )
++len, n <<= ; for (int i = ; i < n; ++i)
{
rev[i] |= rev[i >> ] >> ;
rev[i] |= (i&) << (len - );
} calculateFFT(a, );
calculateFFT(b, ); for (int i = ; i < n; ++i)
a[i] *= b[i]; calculateFFT(a, -); for (int i = ; i < n; ++i)
a[i] /= n; for (int i= ; i < m; ++i)
ans[i] = int(a[i].real() + 0.5); while (!ans[m - ])--m; for (int i = ; i < m; ++i)
if (ans[i] >= )
{
ans[i + ] += ans[i]/;
ans[i] %= ;
} if (!ans[m])--m; for (int i = m; ~i; --i)
putchar('' + ans[i]);
}

@Author: YouSiki

BZOJ 2179: FFT快速傅立叶的更多相关文章

  1. bzoj 2179: FFT快速傅立叶 -- FFT

    2179: FFT快速傅立叶 Time Limit: 10 Sec  Memory Limit: 259 MB Description 给出两个n位10进制整数x和y,你需要计算x*y. Input ...

  2. BZOJ 2179 FFT快速傅立叶 题解

    bzoj 2179 Description 给出两个n位10进制整数x和y,你需要计算x*y. [题目分析] 高精裸题.练手. [代码] 1.手动高精 #include<cstdio> # ...

  3. bzoj 2179 FFT快速傅立叶 —— FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2179 默写板子,注释的是忘记的地方. 代码如下: #include<iostream& ...

  4. BZOJ 2179 FFT快速傅立叶 ——FFT

    [题目分析] 快速傅里叶变换用于高精度乘法. 其实本质就是循环卷积的计算,也就是多项式的乘法. 两次蝴蝶变换. 二进制取反化递归为迭代. 单位根的巧妙取值,是的复杂度成为了nlogn 范德蒙矩阵计算逆 ...

  5. 【刷题】BZOJ 2179 FFT快速傅立叶

    Description 给出两个n位10进制整数x和y,你需要计算x*y. Input 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数为n的正整数y. Output 输出 ...

  6. 【BZOJ 2179】 2179: FFT快速傅立叶 (FFT)

    2179: FFT快速傅立叶 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 3308  Solved: 1720 Description 给出两个n位 ...

  7. 【BZOJ】2179: FFT快速傅立叶(fft)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2179 fft裸题.... 为嘛我的那么慢....1000多ms.. #include <cst ...

  8. 【bzoj2179】FFT快速傅立叶 FFT模板

    2016-06-01  09:34:54 很久很久很久以前写的了... 今天又比较了一下效率,貌似手写复数要快很多. 贴一下模板: #include<iostream> #include& ...

  9. 【BZOJ2179】FFT快速傅立叶

    [BZOJ2179]FFT快速傅立叶 Description 给出两个n位10进制整数x和y,你需要计算x*y. Input 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位 ...

随机推荐

  1. SDWebImage原理及使用(转)

    转自http://www.cnblogs.com/jys509/p/5199997.html SDWebImage托管在github上.https://github.com/rs/SDWebImage ...

  2. [css]我要用css画幅画(七) - 哆啦A梦

    接着之前的[css]我要用css画幅画(六),今天画的有所不同,画的是哆啦A梦,我们小时候对他的称呼其实是小叮当机器猫. (PS:这次我要做的事情,很多人已经做过,这并不是什么创新,我只是在学习并记录 ...

  3. vimrc

    我的vimrc https://github.com/juandx/vimrc 当然得装vundle git clone https://github.com/VundleVim/Vundle.vim ...

  4. 配置git同时push到两个远端库的简单方法

    最近在写一个开源的论坛系统,在发布代码时选择了github和coding这两个平台,我手懒,不想敲两次git push了,所以说突然有了一个很奇怪的需求:用一条git push同时push到两个远端代 ...

  5. 【转】关于Java的Daemon线程的理解

    原文地址:http://www.cnblogs.com/ChrisWang/archive/2009/11/28/1612815.html 关于Java的Daemon线程的理解 网上对Java的Dae ...

  6. linux下重启服务命令

    1.查找进程id命令 ps -ef | grep -v grep|grep bdse-tour-service-1.0-jar-with-dependencies.jar | awk '{print ...

  7. 锐捷与Vmare网络冲突解决办法

    首先,禁用掉VMare的两个适配器,然后在我的电脑右键管理中找到服务,把VMare的所有服务开起来,并把手动改成自动,最后把VMare的网络设置设置为NAT连接即可.

  8. 转载:SqlServer数据库性能优化详解

    本文转载自:http://blog.csdn.net/andylaudotnet/article/details/1763573 性能调节的目的是通过将网络流通.磁盘 I/O 和 CPU 时间减到最小 ...

  9. cf之路,1,Codeforces Round #345 (Div. 2)

     cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅.....   ...

  10. NOIP2012同余方程[exgcd]

    题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开 输出格式: 输出只有一行,包含一个正整 ...