面向分布式强化学习的经验回放框架(使用例子Demo)——Reverb: A Framework for Experience Replay
相关前文:
面向分布式强化学习的经验回放框架——Reverb: A Framework for Experience Replay
论文题目:
Reverb: A Framework for Experience Replay
地址:
https://arxiv.org/pdf/2102.04736.pdf
框架代码地址:
https://github.com/deepmind/reverb
环境安装:
pip install dm-reverb[tensorflow]
============================================
Example 1: Overlapping Trajectories
Inserting Overlapping Trajectories
import reverb
import tensorflow as tf OBSERVATION_SPEC = tf.TensorSpec([10, 10], tf.uint8)
ACTION_SPEC = tf.TensorSpec([2], tf.float32) def agent_step(unused_timestep) -> tf.Tensor:
return tf.cast(tf.random.uniform(ACTION_SPEC.shape) > .5,
ACTION_SPEC.dtype) def environment_step(unused_action) -> tf.Tensor:
return tf.cast(tf.random.uniform(OBSERVATION_SPEC.shape, maxval=256),
OBSERVATION_SPEC.dtype) # Initialize the reverb server.
simple_server = reverb.Server(
tables=[
reverb.Table(
name='my_table',
sampler=reverb.selectors.Prioritized(priority_exponent=0.8),
remover=reverb.selectors.Fifo(),
max_size=int(1e6),
# Sets Rate Limiter to a low number for the examples.
# Read the Rate Limiters section for usage info.
rate_limiter=reverb.rate_limiters.MinSize(2),
# The signature is optional but it is good practice to set it as it
# enables data validation and easier dataset construction. Note that
# we prefix all shapes with a 3 as the trajectories we'll be writing
# consist of 3 timesteps.
signature={
'actions':
tf.TensorSpec([3, *ACTION_SPEC.shape], ACTION_SPEC.dtype),
'observations':
tf.TensorSpec([3, *OBSERVATION_SPEC.shape],
OBSERVATION_SPEC.dtype),
},
)
],
# Sets the port to None to make the server pick one automatically.
# This can be omitted as it's the default.
port=9999) # Initializes the reverb client on the same port as the server.
client = reverb.Client(f'localhost:{simple_server.port}') # Dynamically adds trajectories of length 3 to 'my_table' using a client writer. with client.trajectory_writer(num_keep_alive_refs=3) as writer:
timestep = environment_step(None)
for step in range(4):
action = agent_step(timestep)
writer.append({'action': action, 'observation': timestep})
timestep = environment_step(action) if step >= 2:
# In this example, the item consists of the 3 most recent timesteps that
# were added to the writer and has a priority of 1.5.
writer.create_item(
table='my_table',
priority=1.5,
trajectory={
'actions': writer.history['action'][-3:],
'observations': writer.history['observation'][-3:],
}
)
server端和client端可以不在同一台主机上,这个例子是server和client在同一主机上。上面例子预设server端的端口为9999。其中server端主要功能为维持经验池中数据,client端可以sample,也可以insert,上面例子中client只进行了insert操作。
关于语句:
个人的理解是,client中的数据如果需要进行insert操作,那么需要先申请一段缓存空间的,其中缓存空间的大小定义就是上面的参数num_keep_alive_refs,而writer.append操作是将数据写入到client端的缓存中,也就是num_keep_alive_refs所定义大小的缓存空间中,writer.create_item则是执行将加入到缓存空间中的数据insert到服务端的操作。这就需要保证writer.create_item的时候数据是需要保持在缓存中的,也就是说num_keep_alive_refs需要足够大,不然缓存空间中没有对应的数据而此时执行writer.create_item则是会报错的,当然我们也可以直接将num_keep_alive_refs设置为一个足够大的数,但是这样就会造成client端内存的浪费。
num_keep_alive_refs所定义大小的client端缓存空间中数据会由于writer.append操作造成旧数据移除,比如上面例子中如果设置语句:
with client.trajectory_writer(num_keep_alive_refs=2) as writer:
就会报错,但是设置语句:
with client.trajectory_writer(num_keep_alive_refs=4) as writer:
就不会报错。
Sampling Overlapping Trajectories in TensorFlow
在同一主机上执行server端代码,如下:

import reverb
import tensorflow as tf OBSERVATION_SPEC = tf.TensorSpec([10, 10], tf.uint8)
ACTION_SPEC = tf.TensorSpec([2], tf.float32) def agent_step(unused_timestep) -> tf.Tensor:
return tf.cast(tf.random.uniform(ACTION_SPEC.shape) > .5,
ACTION_SPEC.dtype) def environment_step(unused_action) -> tf.Tensor:
return tf.cast(tf.random.uniform(OBSERVATION_SPEC.shape, maxval=256),
OBSERVATION_SPEC.dtype) # Initialize the reverb server.
simple_server = reverb.Server(
tables=[
reverb.Table(
name='my_table',
sampler=reverb.selectors.Prioritized(priority_exponent=0.8),
remover=reverb.selectors.Fifo(),
max_size=int(1e6),
# Sets Rate Limiter to a low number for the examples.
# Read the Rate Limiters section for usage info.
rate_limiter=reverb.rate_limiters.MinSize(2),
# The signature is optional but it is good practice to set it as it
# enables data validation and easier dataset construction. Note that
# we prefix all shapes with a 3 as the trajectories we'll be writing
# consist of 3 timesteps.
signature={
'actions':
tf.TensorSpec([3, *ACTION_SPEC.shape], ACTION_SPEC.dtype),
'observations':
tf.TensorSpec([3, *OBSERVATION_SPEC.shape],
OBSERVATION_SPEC.dtype),
},
)
],
# Sets the port to None to make the server pick one automatically.
# This can be omitted as it's the default.
port=9999) # Initializes the reverb client on the same port as the server.
client = reverb.Client(f'localhost:{simple_server.port}') # Dynamically adds trajectories of length 3 to 'my_table' using a client writer. with client.trajectory_writer(num_keep_alive_refs=3) as writer:
timestep = environment_step(None)
for step in range(4):
action = agent_step(timestep)
writer.append({'action': action, 'observation': timestep})
timestep = environment_step(action) if step >= 2:
# In this example, the item consists of the 3 most recent timesteps that
# were added to the writer and has a priority of 1.5.
writer.create_item(
table='my_table',
priority=1.5,
trajectory={
'actions': writer.history['action'][-3:],
'observations': writer.history['observation'][-3:],
}
) import time
time.sleep(3333333)
并同时执行客户端代码:
import reverb # Dataset samples sequences of length 3 and streams the timesteps one by one.
# This allows streaming large sequences that do not necessarily fit in memory.
dataset = reverb.TrajectoryDataset.from_table_signature(
server_address=f'localhost:9999',
table='my_table',
max_in_flight_samples_per_worker=10) # Batches 2 sequences together.
# Shapes of items is now [2, 3, 10, 10].
batched_dataset = dataset.batch(2) for sample in batched_dataset.take(2):
# Results in the following format.
print(sample.info.key) # ([2], uint64)
print(sample.info.probability) # ([2], float64) print(sample.data['observations']) # ([2, 3, 10, 10], uint8)
print(sample.data['actions']) # ([2, 3, 2], float32)
其中,dataset.batch(2)语句定义每次sample时batch_size的大小,这条语句含义为定义大小。
语句:for sample in batched_dataset.take(2):是设置返回的迭代器可以迭代的此数,也就是说可以迭代返回的batch的个数,这里我们设置可以返回的batch个数为2,那么for循环就可以循环两次。
===================================
其他相关代码见地址:
https://github.com/deepmind/reverb/blob/master/examples/demo.ipynb
https://github.com/deepmind/reverb/blob/master/examples/frame_stacking.ipynb
===================================
面向分布式强化学习的经验回放框架(使用例子Demo)——Reverb: A Framework for Experience Replay的更多相关文章
- 分布式强化学习基础概念(Distributional RL )
分布式强化学习基础概念(Distributional RL) from: https://mtomassoli.github.io/2017/12/08/distributional_rl/ 1. Q ...
- 强化学习(十七) 基于模型的强化学习与Dyna算法框架
在前面我们讨论了基于价值的强化学习(Value Based RL)和基于策略的强化学习模型(Policy Based RL),本篇我们讨论最后一种强化学习流派,基于模型的强化学习(Model Base ...
- ICML 2018 | 从强化学习到生成模型:40篇值得一读的论文
https://blog.csdn.net/y80gDg1/article/details/81463731 感谢阅读腾讯AI Lab微信号第34篇文章.当地时间 7 月 10-15 日,第 35 届 ...
- 5G网络的深度强化学习:联合波束成形,功率控制和干扰协调
摘要:第五代无线通信(5G)支持大幅增加流量和数据速率,并提高语音呼叫的可靠性.在5G无线网络中共同优化波束成形,功率控制和干扰协调以增强最终用户的通信性能是一项重大挑战.在本文中,我们制定波束形成, ...
- 强化学习(十八) 基于模拟的搜索与蒙特卡罗树搜索(MCTS)
在强化学习(十七) 基于模型的强化学习与Dyna算法框架中,我们讨论基于模型的强化学习方法的基本思路,以及集合基于模型与不基于模型的强化学习框架Dyna.本文我们讨论另一种非常流行的集合基于模型与不基 ...
- ICML论文|阿尔法狗CTO讲座: AI如何用新型强化学习玩转围棋扑克游戏
今年8月,Demis Hassabis等人工智能技术先驱们将来到雷锋网“人工智能与机器人创新大会”.在此,我们为大家分享David Silver的论文<不完美信息游戏中的深度强化学习自我对战&g ...
- 强化学习中的经验回放(The Experience Replay in Reinforcement Learning)
一.Play it again: reactivation of waking experience and memory(Trends in Neurosciences 2010) SWR发放模式不 ...
- 谷歌重磅开源强化学习框架Dopamine吊打OpenAI
谷歌重磅开源强化学习框架Dopamine吊打OpenAI 近日OpenAI在Dota 2上的表现,让强化学习又火了一把,但是 OpenAI 的强化学习训练环境 OpenAI Gym 却屡遭抱怨,比如不 ...
- 谷歌推出新型强化学习框架Dopamine
今日,谷歌发布博客介绍其最新推出的强化学习新框架 Dopamine,该框架基于 TensorFlow,可提供灵活性.稳定性.复现性,以及快速的基准测试. GitHub repo:https://git ...
- 【强化学习】1-1-2 “探索”(Exploration)还是“ 利用”(Exploitation)都要“面向目标”(Goal-Direct)
title: [强化学习]1-1-2 "探索"(Exploration)还是" 利用"(Exploitation)都要"面向目标"(Goal ...
随机推荐
- 如何基于Perl实现批量蛋白名转换为基因名?以做后续GO与KEGG分析
众所周知,在完成蛋白组学组间差异蛋白筛选后,往往要做GO与KEGG功能富集分析,这就需要我们首先将蛋白名转换为基因名,或者找出基因ID.将蛋白名转化为基因名可能涉及不同的转换工具或数据库,这里有几种常 ...
- 高性能版本的零内存分配LikeString函数(ZeroMemAllocLikeOperator)
继上一篇文章在.NET Core,除了VB的LikeString,还有其它方法吗?(四种LikeString实现分享)分享了四种实现方式,笔者对这四种实现方式,不管是执行性能还是内存分配性能上,都不太 ...
- mybatis sqlmap sql in 查询
<select id="selectBlogs" parameterType="map"> SELECT * FROM blog WHERE use ...
- Linux系统与网络管理
0. 背景 0.1 Unix Unix诞生于1969年 特点 多任务 多用户 多平台 保护模式 可移植操作系统接口(POSIX) 0.2 Linux 与Unix关系 类Unix系统,完全按照Unix的 ...
- DotNet Web应用单文件部署系列
目录 一. pubxml文件配置 二. 打包wwwroot文件夹 三. 混淆dll文件 四. csproj文件配置 五. 批处理 六. Windows服务安装 七. ...
- Pytest 失败重运行
需安装第三方插件:pytest-rerun.pytest-rerunfailures 失败重试和失败重运行的区别 失败重试:[--reruns=1],用例执行失败后,会立即开始重试一次此用例,再执行下 ...
- 【WPF】根据选项值显示不同的编辑控件(使用DataTemplateSelector)
接了一个小杂毛项目,大概情形是这样的:ZWT先生开的店是卖拆片机的,Z先生不仅卖机器,还贴心地提供一项服务:可以根据顾客需要修改两个电机的转向和转速(机器厂家有给SDK的,但Z自己不会写程序).厂家有 ...
- 【论文阅读】RAL2022: Make it Dense: Self-Supervised Geometric Scan Completion of Sparse 3D LiDAR Scans in Large Outdoor Environments
0. 参考与前言 论文链接:https://ieeexplore.ieee.org/document/9812507 代码链接:https://github.com/PRBonn/make_it_de ...
- Nuxt3 的生命周期和钩子函数(八)
title: Nuxt3 的生命周期和钩子函数(八) date: 2024/6/30 updated: 2024/6/30 author: cmdragon excerpt: 摘要:本文介绍了Nuxt ...
- Excel插件之连接数据数据库秒数处理,办公轻松化
接上文,对excel连接数据库需求的进一步优化: Excel 更改数据同步更新到Mysql数据库 1.通过mysql for excel 插件的思路,了解到一个新的插件 sqlcel,通过这个插件ex ...