相关前文:

面向分布式强化学习的经验回放框架——Reverb: A Framework for Experience Replay

论文题目:

Reverb: A Framework for Experience Replay

地址:

https://arxiv.org/pdf/2102.04736.pdf

框架代码地址:

https://github.com/deepmind/reverb

环境安装:

pip install dm-reverb[tensorflow]

============================================

Example 1: Overlapping Trajectories

Inserting Overlapping Trajectories

import reverb
import tensorflow as tf OBSERVATION_SPEC = tf.TensorSpec([10, 10], tf.uint8)
ACTION_SPEC = tf.TensorSpec([2], tf.float32) def agent_step(unused_timestep) -> tf.Tensor:
return tf.cast(tf.random.uniform(ACTION_SPEC.shape) > .5,
ACTION_SPEC.dtype) def environment_step(unused_action) -> tf.Tensor:
return tf.cast(tf.random.uniform(OBSERVATION_SPEC.shape, maxval=256),
OBSERVATION_SPEC.dtype) # Initialize the reverb server.
simple_server = reverb.Server(
tables=[
reverb.Table(
name='my_table',
sampler=reverb.selectors.Prioritized(priority_exponent=0.8),
remover=reverb.selectors.Fifo(),
max_size=int(1e6),
# Sets Rate Limiter to a low number for the examples.
# Read the Rate Limiters section for usage info.
rate_limiter=reverb.rate_limiters.MinSize(2),
# The signature is optional but it is good practice to set it as it
# enables data validation and easier dataset construction. Note that
# we prefix all shapes with a 3 as the trajectories we'll be writing
# consist of 3 timesteps.
signature={
'actions':
tf.TensorSpec([3, *ACTION_SPEC.shape], ACTION_SPEC.dtype),
'observations':
tf.TensorSpec([3, *OBSERVATION_SPEC.shape],
OBSERVATION_SPEC.dtype),
},
)
],
# Sets the port to None to make the server pick one automatically.
# This can be omitted as it's the default.
port=9999) # Initializes the reverb client on the same port as the server.
client = reverb.Client(f'localhost:{simple_server.port}') # Dynamically adds trajectories of length 3 to 'my_table' using a client writer. with client.trajectory_writer(num_keep_alive_refs=3) as writer:
timestep = environment_step(None)
for step in range(4):
action = agent_step(timestep)
writer.append({'action': action, 'observation': timestep})
timestep = environment_step(action) if step >= 2:
# In this example, the item consists of the 3 most recent timesteps that
# were added to the writer and has a priority of 1.5.
writer.create_item(
table='my_table',
priority=1.5,
trajectory={
'actions': writer.history['action'][-3:],
'observations': writer.history['observation'][-3:],
}
)

server端和client端可以不在同一台主机上,这个例子是server和client在同一主机上。上面例子预设server端的端口为9999。其中server端主要功能为维持经验池中数据,client端可以sample,也可以insert,上面例子中client只进行了insert操作。

server端负责数据的sample和insert操作的定义,虽然客户端调用sample操作或insert操作,但是最后的具体执行还是在server端,毕竟数据是由server端所维护的。 

关于语句:

with client.trajectory_writer(num_keep_alive_refs=3) as writer:

个人的理解是,client中的数据如果需要进行insert操作,那么需要先申请一段缓存空间的,其中缓存空间的大小定义就是上面的参数num_keep_alive_refs,而writer.append操作是将数据写入到client端的缓存中,也就是num_keep_alive_refs所定义大小的缓存空间中,writer.create_item则是执行将加入到缓存空间中的数据insert到服务端的操作。这就需要保证writer.create_item的时候数据是需要保持在缓存中的,也就是说num_keep_alive_refs需要足够大,不然缓存空间中没有对应的数据而此时执行writer.create_item则是会报错的,当然我们也可以直接将num_keep_alive_refs设置为一个足够大的数,但是这样就会造成client端内存的浪费。

num_keep_alive_refs所定义大小的client端缓存空间中数据会由于writer.append操作造成旧数据移除,比如上面例子中如果设置语句:

with client.trajectory_writer(num_keep_alive_refs=2) as writer:

就会报错,但是设置语句:

with client.trajectory_writer(num_keep_alive_refs=4) as writer:

就不会报错。

Sampling Overlapping Trajectories in TensorFlow

在同一主机上执行server端代码,如下:

import reverb
import tensorflow as tf OBSERVATION_SPEC = tf.TensorSpec([10, 10], tf.uint8)
ACTION_SPEC = tf.TensorSpec([2], tf.float32) def agent_step(unused_timestep) -> tf.Tensor:
return tf.cast(tf.random.uniform(ACTION_SPEC.shape) > .5,
ACTION_SPEC.dtype) def environment_step(unused_action) -> tf.Tensor:
return tf.cast(tf.random.uniform(OBSERVATION_SPEC.shape, maxval=256),
OBSERVATION_SPEC.dtype) # Initialize the reverb server.
simple_server = reverb.Server(
tables=[
reverb.Table(
name='my_table',
sampler=reverb.selectors.Prioritized(priority_exponent=0.8),
remover=reverb.selectors.Fifo(),
max_size=int(1e6),
# Sets Rate Limiter to a low number for the examples.
# Read the Rate Limiters section for usage info.
rate_limiter=reverb.rate_limiters.MinSize(2),
# The signature is optional but it is good practice to set it as it
# enables data validation and easier dataset construction. Note that
# we prefix all shapes with a 3 as the trajectories we'll be writing
# consist of 3 timesteps.
signature={
'actions':
tf.TensorSpec([3, *ACTION_SPEC.shape], ACTION_SPEC.dtype),
'observations':
tf.TensorSpec([3, *OBSERVATION_SPEC.shape],
OBSERVATION_SPEC.dtype),
},
)
],
# Sets the port to None to make the server pick one automatically.
# This can be omitted as it's the default.
port=9999) # Initializes the reverb client on the same port as the server.
client = reverb.Client(f'localhost:{simple_server.port}') # Dynamically adds trajectories of length 3 to 'my_table' using a client writer. with client.trajectory_writer(num_keep_alive_refs=3) as writer:
timestep = environment_step(None)
for step in range(4):
action = agent_step(timestep)
writer.append({'action': action, 'observation': timestep})
timestep = environment_step(action) if step >= 2:
# In this example, the item consists of the 3 most recent timesteps that
# were added to the writer and has a priority of 1.5.
writer.create_item(
table='my_table',
priority=1.5,
trajectory={
'actions': writer.history['action'][-3:],
'observations': writer.history['observation'][-3:],
}
) import time
time.sleep(3333333)

并同时执行客户端代码:

import reverb

# Dataset samples sequences of length 3 and streams the timesteps one by one.
# This allows streaming large sequences that do not necessarily fit in memory.
dataset = reverb.TrajectoryDataset.from_table_signature(
server_address=f'localhost:9999',
table='my_table',
max_in_flight_samples_per_worker=10) # Batches 2 sequences together.
# Shapes of items is now [2, 3, 10, 10].
batched_dataset = dataset.batch(2) for sample in batched_dataset.take(2):
# Results in the following format.
print(sample.info.key) # ([2], uint64)
print(sample.info.probability) # ([2], float64) print(sample.data['observations']) # ([2, 3, 10, 10], uint8)
print(sample.data['actions']) # ([2, 3, 2], float32)

其中,dataset.batch(2)语句定义每次sample时batch_size的大小,这条语句含义为定义大小。

语句:for sample in batched_dataset.take(2):是设置返回的迭代器可以迭代的此数,也就是说可以迭代返回的batch的个数,这里我们设置可以返回的batch个数为2,那么for循环就可以循环两次。

===================================

 

其他相关代码见地址:

https://github.com/deepmind/reverb/blob/master/examples/demo.ipynb

https://github.com/deepmind/reverb/blob/master/examples/frame_stacking.ipynb

===================================

 
 

面向分布式强化学习的经验回放框架(使用例子Demo)——Reverb: A Framework for Experience Replay的更多相关文章

  1. 分布式强化学习基础概念(Distributional RL )

    分布式强化学习基础概念(Distributional RL) from: https://mtomassoli.github.io/2017/12/08/distributional_rl/ 1. Q ...

  2. 强化学习(十七) 基于模型的强化学习与Dyna算法框架

    在前面我们讨论了基于价值的强化学习(Value Based RL)和基于策略的强化学习模型(Policy Based RL),本篇我们讨论最后一种强化学习流派,基于模型的强化学习(Model Base ...

  3. ICML 2018 | 从强化学习到生成模型:40篇值得一读的论文

    https://blog.csdn.net/y80gDg1/article/details/81463731 感谢阅读腾讯AI Lab微信号第34篇文章.当地时间 7 月 10-15 日,第 35 届 ...

  4. 5G网络的深度强化学习:联合波束成形,功率控制和干扰协调

    摘要:第五代无线通信(5G)支持大幅增加流量和数据速率,并提高语音呼叫的可靠性.在5G无线网络中共同优化波束成形,功率控制和干扰协调以增强最终用户的通信性能是一项重大挑战.在本文中,我们制定波束形成, ...

  5. 强化学习(十八) 基于模拟的搜索与蒙特卡罗树搜索(MCTS)

    在强化学习(十七) 基于模型的强化学习与Dyna算法框架中,我们讨论基于模型的强化学习方法的基本思路,以及集合基于模型与不基于模型的强化学习框架Dyna.本文我们讨论另一种非常流行的集合基于模型与不基 ...

  6. ICML论文|阿尔法狗CTO讲座: AI如何用新型强化学习玩转围棋扑克游戏

    今年8月,Demis Hassabis等人工智能技术先驱们将来到雷锋网“人工智能与机器人创新大会”.在此,我们为大家分享David Silver的论文<不完美信息游戏中的深度强化学习自我对战&g ...

  7. 强化学习中的经验回放(The Experience Replay in Reinforcement Learning)

    一.Play it again: reactivation of waking experience and memory(Trends in Neurosciences 2010) SWR发放模式不 ...

  8. 谷歌重磅开源强化学习框架Dopamine吊打OpenAI

    谷歌重磅开源强化学习框架Dopamine吊打OpenAI 近日OpenAI在Dota 2上的表现,让强化学习又火了一把,但是 OpenAI 的强化学习训练环境 OpenAI Gym 却屡遭抱怨,比如不 ...

  9. 谷歌推出新型强化学习框架Dopamine

    今日,谷歌发布博客介绍其最新推出的强化学习新框架 Dopamine,该框架基于 TensorFlow,可提供灵活性.稳定性.复现性,以及快速的基准测试. GitHub repo:https://git ...

  10. 【强化学习】1-1-2 “探索”(Exploration)还是“ 利用”(Exploitation)都要“面向目标”(Goal-Direct)

    title: [强化学习]1-1-2 "探索"(Exploration)还是" 利用"(Exploitation)都要"面向目标"(Goal ...

随机推荐

  1. springmvc组件说明

    DispatcherServlet:前端控制器,也称为中央控制器,它是整个请求响应的控制中心,组件的调用由它统一调度. HandlerMapping:处理器映射器,它根据用户访问的 URL 映射到对应 ...

  2. Java接口签名和验签

    Java接口签名和验签 import com.alibaba.fastjson.JSON; import org.apache.commons.lang3.StringUtils; import ja ...

  3. Json字符串转换处理html编码格式,= \u003d 处理

    Json字符串转换处理html编码格式,=  \u003d 处理 import com.alibaba.fastjson.annotation.JSONField; import com.faster ...

  4. 解析Html Canvas的卓越性能与高效渲染策略

    一.什么是Canvas 想必学习前端的同学们对Canvas 都不陌生,它是 HTML5 新增的"画布"元素,可以使用JavaScript来绘制图形. Canvas元素是在HTML5 ...

  5. scrapy爬取知名问答网站

    scrapy爬取知名问答网站 分析及数据表设计 itemloader方式提取question spider爬虫逻辑的实现以及answer的提取 保存数据到mysql中

  6. 基于Vue+OpenSeaDragon的数字细胞阅片开发

    前端框架: vue+elementui+openseadragon 后端 .net core 5.0 数据库 mysql 目前项目效果如图 在原有的基础上新增了阅片轨迹 图像调节,绘图,截图等功能. ...

  7. FEDORA34 安装CUDA11.3

    FEDORA34 安装CUDA11.3 首先确保能装上最新的显卡驱动.  FEDORA显卡驱动安装 然后去官网下fedora对应的.run安装文件.运行安装, 但不要选装驱动. 完成后加环境变量: # ...

  8. 关于Android开机动画调试的一点小小的经验

    格式要求: 开机动画图片既可以是jpg文件,也可以是png文件,只是一定要按顺序命名.文件名命名的国际惯例是五位数,即:00000.00001. 00002--也可以是文件夹名称+下划线+序数,即:p ...

  9. hynitron ts 驱动分析

    # hynitron ts 驱动分析 背景 在公司项目中搞LCD移植的时候,在TP功能上,有时候频繁操作屏幕时会导致i2c总线返回-2错误. 问题描述: 1.安卓桌面起来以后,点击屏幕有响应. 2.此 ...

  10. 读懂反向传播算法(bp算法)

    原文链接:这里 介绍 反向传播算法可以说是神经网络最基础也是最重要的知识点.基本上所以的优化算法都是在反向传播算出梯度之后进行改进的.同时,也因为反向传播算法是一个递归的形式,一层一层的向后传播误差即 ...