题面

传送门

题解

看\(mashirosky\)大佬的题解吧……这里

//minamoto
#include<bits/stdc++.h>
#define R register
#define inf 0x3f3f3f3f
#define inline __inline__ __attribute__((always_inline))
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
double readdb()
{
R double x=0,y=0.1,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(x=ch-'0';(ch=getc())>='0'&&ch<='9';x=x*10+ch-'0');
for(ch=='.'&&(ch=getc());ch>='0'&&ch<='9';x+=(ch-'0')*y,y*=0.1,ch=getc());
return x*f;
}
const int N=10005;const double eps=1e-13;
inline int sgn(R double x){return x<-eps?-1:x>eps;}
double s[N],k[N],vp[N],v[N],mx[N],E;
int n;
bool ck(double lam){
double res=0,l,r,mid;
fp(i,1,n){
l=max(0.0,vp[i]),r=mx[i],mid;
while(sgn(r-l)>0){
mid=(l+r)*0.5;
(sgn(2*lam*mid*mid*k[i]*(mid-vp[i])+1)>=0)?l=mid:r=mid;
}
v[i]=l,res+=k[i]*(v[i]-vp[i])*(v[i]-vp[i])*s[i];
if(sgn(E-res)<0)return false;
}
return true;
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),E=readdb();
fp(i,1,n){
s[i]=readdb(),k[i]=readdb(),vp[i]=readdb();
mx[i]=sgn(s[i])?sqrt(E/k[i]/s[i])+vp[i]:inf;
}
double l=-inf,r=0,mid;
while(sgn(r-l)>0){
mid=(l+r)*0.5;
ck(mid)?l=mid:r=mid;
}
ck(r);
double res=0;
fp(i,1,n)res+=s[i]/v[i];
printf("%.8lf\n",res);
return 0;
}

洛谷P2179 [NOI2012]骑行川藏(拉格朗日乘数法)的更多相关文章

  1. [BZOJ2876][NOI2012]骑行川藏(拉格朗日乘数法)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2876 分析:就是要求约束条件下函数的极值,于是拉格朗日乘数列方程,发现化简后的关于vi ...

  2. bzoj 2876: [Noi2012]骑行川藏 拉格朗日数乘

    2876: [Noi2012]骑行川藏 Time Limit: 20 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 1033  Solved: ...

  3. 【洛谷】P2179 [NOI2012]骑行川藏

    题解 感谢小迪给我讲题啊,这题小迪写挺好的我就不写了吧 小迪的题解 代码 #include <iostream> #include <cstdio> #include < ...

  4. Luogu P2179 [NOI2012]骑行川藏

    题意 给定 \(n\) 个路段,每个路段用三个实数 \(s_i,k_i,v^\prime_i\) 描述,最小化 \[F(v_1,\cdots v_n)=\sum\limits_{i=1}^{n}\fr ...

  5. [NOI2012]骑行川藏——拉格朗日乘子法

    原题链接 不会啊,只好现学了拉格朗日乘子法,简单记录一下 前置芝士:拉格朗日乘子法 要求\(n\)元目标函数\(f(x_1,x_2,...,x_n)\)的极值,且有\(m\)个约束函数形如\(h_i( ...

  6. bzoj2876 [NOI2012]骑行川藏(拉格朗日乘数法)

    题目描述 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因此在每天的骑行 ...

  7. 2876: [Noi2012]骑行川藏 - BZOJ

    Description 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因 ...

  8. bzoj2876 [Noi2012]骑行川藏

    Description 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因 ...

  9. 题解 洛谷 P2179 【[NOI2012]骑行川藏】

    题意为在满足\(\sum\limits_{i=1}^nk_i(v_i-v_i^\prime)^2s_i\leqslant E_U\)的条件下最小化\(\sum\limits_{i=1}^n\frac{ ...

随机推荐

  1. JAVA 获取文件的MD5值大小以及常见的工具类

    /** * 获取文件的MD5值大小 * * @param file * 文件对象 * @return */ public static String getMD5(File file) { FileI ...

  2. U3D+SVN: 两份相同资源放在不同目录下导致META的更改

    U3D+SVN: 两份相同资源放在不同目录下导致META的更改. 实际情形:将地图文件map拷一份放在其它目录,回到UNITY编辑器,载入完成后加到磁盘,看到map文件夹下的所有meta都变红了. r ...

  3. 323. Number of Connected Components in an Undirected Graph按照线段添加的并查集

    [抄题]: Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of n ...

  4. QByteArray to QString

    QByteArray => QString void BarEngine::ByteArrayToString(QByteArray &ba, QString &str) { i ...

  5. android studio升级方法

    android studio 更新问题: 如果被墙则采用以下步骤: 一:看版本 help-->about    AI***************** 二:查看android studio最新版 ...

  6. Sketch插件新利器——使用Mockplus DS制作设计规范

    Sketch,作为一款专为图标和界面设计而打造的优质矢量绘图工具,也是设计师们制作和完善公司企业内部设计规范系统不可或缺的设计工具. 然而,逐个导出和上传Sketch编辑优化的设计系统资源费时而费力. ...

  7. 12个优秀的国外Material Design网站案例

    眼看2017年就快完了,你是不是还没完全搞懂Material Design呢?是嫌说明文档太长,还是觉得自己英文不好?都没关系,小编今天给大家整理了一份干货满满的学习笔记,并列举了一些国外的Mater ...

  8. 名字也挺重要---Webservice

    整了几个WebService  方法的返回类型叫GetResponse ,GetDataResponse结果老报错,要加啥元素,加了也报错,后来把Get改成Retrive,运行就正常了,看来Get抢手 ...

  9. golang C相互调用带参数

    test.h #ifndef __TEST_H__ #define __TEST_H__ void SetFunc(char* str); extern void InternalFunc(char* ...

  10. Nginx搭建后,图片存储在Tomcat上,前端无法回显图片问题

    一.Nginx与Tomcat连接搭建的环境,Nginx设置了前端的访问路径为 (1)前端代码配置: root /usr/local/nginx/html; index index.html index ...