【BZOJ3275】Number

Description

有N个正整数,需要从中选出一些数,使这些数的和最大。
若两个数a,b同时满足以下条件,则a,b不能同时被选
1:存在正整数C,使a*a+b*b=c*c
2:gcd(a,b)=1

Input

第一行一个正整数n,表示数的个数。
第二行n个正整数a1,a2,?an。

Output

最大的和。

Sample Input

5
3 4 5 6 7

Sample Output

22

HINT

n<=3000。

题解:先是无脑码了个最小割,果断WA了,看网上才又get了一个新定理

易证:奇数和奇数的平方和一定不是完全平方数,偶数和偶数的gcd一定不为1

然后就把所有的数分成奇数和偶数两个集合,然后再跑最小割就完事了

#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
#include <algorithm>
#include <cmath>
using namespace std;
int n,cnt,tot,ans,tx,ty;
queue<int> q;
int vx[3010],vy[3010],next[1000000],head[6010],to[1000000],val[1000000],d[6010];
int gcd(int a,int b)
{
return (b==0)?a:gcd(b,a%b);
}
int dfs(int x,int mf)
{
if(x==n+1) return mf;
int i,k,temp=mf;
for(i=head[x];i!=-1;i=next[i])
{
if(d[to[i]]==d[x]+1&&val[i])
{
k=dfs(to[i],min(temp,val[i]));
if(!k) d[to[i]]=0;
val[i]-=k,val[i^1]+=k,temp-=k;
if(!temp) break;
}
}
return mf-temp;
}
int bfs()
{
int i,u;
memset(d,0,sizeof(d));
while(!q.empty()) q.pop();
q.push(0),d[0]=1;
while(!q.empty())
{
u=q.front(),q.pop();
for(i=head[u];i!=-1;i=next[i])
{
if(!d[to[i]]&&val[i])
{
d[to[i]]=d[u]+1;
if(to[i]==n+1) return 1;
q.push(to[i]);
}
}
}
return 0;
}
void add(int a,int b,int c)
{
to[cnt]=b;
val[cnt]=c;
next[cnt]=head[a];
head[a]=cnt++;
}
int main()
{
scanf("%d",&n);
int i,j,k;
memset(head,-1,sizeof(head));
for(i=1;i<=n;i++)
{
scanf("%d",&k);
tot+=k;
if(k&1) vx[++tx]=k;
else vy[++ty]=k;
}
for(i=1;i<=tx;i++) add(0,i,vx[i]),add(i,0,0);
for(i=1;i<=ty;i++) add(i+tx,n+1,vy[i]),add(n+1,i+tx,0);
for(i=1;i<=tx;i++)
{
for(j=1;j<=ty;j++)
{
if(gcd(vx[i],vy[j])!=1) continue;
int k=vx[i]*vx[i]+vy[j]*vy[j];
if(int(sqrt(k*1.0)+0.00001)*int(sqrt(k*1.0)+0.00001)==k)
{
add(i,tx+j,1<<30);
add(tx+j,i,0);
}
}
}
while(bfs()) ans+=dfs(0,1<<30);
printf("%d",tot-ans);
return 0;
}

【BZOJ3275】Number 最小割的更多相关文章

  1. bzoj3275: Number(最小割)

    3275: Number 题目:传送门 题解: 双倍经验@bzoj3158 代码: #include<cstdio> #include<cstring> #include< ...

  2. BZOJ 3275: Number( 最小割 )

    S->每个奇数,每个偶数->T各连一条边, 容量为这个数字.然后不能同时选的两个数连容量为+oo的边. 总数-最大流即是答案. 因为满足a2+b2=c2的a,b一定是一奇一偶或者两个偶数, ...

  3. 【BZOJ-3275&3158】Number&千钧一发 最小割

    3275: Number Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 748  Solved: 316[Submit][Status][Discus ...

  4. 【最小割】【Dinic】bzoj3275 Number

    每个点拆点,分别向源/汇连a[i]的边,满足条件的相互连INF的边,答案为sum-maxflow*2. 因为若有几个点不能同时被选,我们要贪心地选择其中和尽量大的部分,这可以由最小割来保证. #inc ...

  5. bzoj 3275 Number(最小割)

    [题意] 给定n个数,要求选出一些数满足 1.存在c,a*a+b*b=c*c 2.gcd(a,b)=1  使得和最大. [思路] 二分图的最大权独立集(可以这么叫么QAQ 先拆点,对于不满足条件的两个 ...

  6. BZOJ 3275: Number (二分图最小割)

    题意 有nnn个数,其中同时满足下面两个条件的数对不能同时选,求选出一些数让和最大. 若两个数aaa,bbb同时满足以下条件,则aaa,bbb不能同时被选 存在正整数ccc,使a∗a+b∗b=c∗ca ...

  7. 二分图&网络流&最小割等问题的总结

    二分图基础: 最大匹配:匈牙利算法 最小点覆盖=最大匹配 最小边覆盖=总节点数-最大匹配 最大独立集=点数-最大匹配 网络流: 技巧: 1.拆点为边,即一个点有限制,可将其转化为边 BZOJ1066, ...

  8. OPTM-Optimal Marks-SPOJ839最小割

    You are given an undirected graph G(V, E). Each vertex has a mark which is an integer from the range ...

  9. Network Wars-ZOJ2676最小割+01规划

    Time Limit: 5 Seconds Memory Limit: 32768 KB Special Judge Network of Byteland consists of n servers ...

随机推荐

  1. mysql编译安装后各种常见错误集锦

    1.ERROR 2013 (HY000): Lost connection to MySQL server at 'reading initial communication packet', sys ...

  2. ASP.NET MVC 使用 Datatables (2)

    在服务器端实现分页,排序,获取当前页面数据 在上篇的基础上进行改造(datatables的客户端实现) 1.修改View页面代码如下: <div class="row"> ...

  3. jqueryEasyui常用代码

    //查询: function doSearch(form){ var fields =$('#queryForm').serializeArray(); var $fm = $(form); var ...

  4. UML总结---UML中的事物和关系

    UML中的事物 名称 说明 图形 类 相同属性方法的集合 接口 类或组件提供的,可以完成特定功能的一组操作的集合 协作 合作的动作 用例 系统的一个功能 节点 代表可计算的资源 活动类 有多个线程的类 ...

  5. Netstat命令(windows下)

    功能: 一般用于检验本机各端口的网络连接情况. 例子:检查本机3389远程连接端口是否可用 netstat -nao|find  "3389" 查看某进程使用的端口号: netst ...

  6. centos7命令总结

    1,查看cpu信息 lscpu 2,网络配置 ip  route   查看路由 nmcli nmcli connection show    显示所有连接 nmcli connection show ...

  7. C++字符串类型和数字之间的转换

    转载:http://www.cnblogs.com/luxiaoxun/archive/2012/08/03/2621803.html 1.字符串数字之间的转换 字符串---字符数组(1)string ...

  8. js数组去重。。(拷的别人代码)

    function unique(arr) { var result = [], hash = {}; for (var i = 0, elem; (elem = arr[i]) != null; i+ ...

  9. Linux使用expect实现自动登录的脚本

    前提条件服务器已经安装过tcl和expect, 若未安装:可以先执行 yum  install tcl  expect  进行安装 第一步.编写以下自动登录脚本login.sh ########### ...

  10. Ubuntu 13.04 安装 Oracle11gR2

    #step 1: groupadd -g 2000 dbauseradd -g 2000 -m -s /bin/bash -u 2000 griduseradd -g 2000 -m -s /bin/ ...