【BZOJ3275】Number 最小割
【BZOJ3275】Number
Description
有N个正整数,需要从中选出一些数,使这些数的和最大。
若两个数a,b同时满足以下条件,则a,b不能同时被选
1:存在正整数C,使a*a+b*b=c*c
2:gcd(a,b)=1
Input
Output
Sample Input
3 4 5 6 7
Sample Output
HINT
n<=3000。
题解:先是无脑码了个最小割,果断WA了,看网上才又get了一个新定理
易证:奇数和奇数的平方和一定不是完全平方数,偶数和偶数的gcd一定不为1
然后就把所有的数分成奇数和偶数两个集合,然后再跑最小割就完事了
#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
#include <algorithm>
#include <cmath>
using namespace std;
int n,cnt,tot,ans,tx,ty;
queue<int> q;
int vx[3010],vy[3010],next[1000000],head[6010],to[1000000],val[1000000],d[6010];
int gcd(int a,int b)
{
return (b==0)?a:gcd(b,a%b);
}
int dfs(int x,int mf)
{
if(x==n+1) return mf;
int i,k,temp=mf;
for(i=head[x];i!=-1;i=next[i])
{
if(d[to[i]]==d[x]+1&&val[i])
{
k=dfs(to[i],min(temp,val[i]));
if(!k) d[to[i]]=0;
val[i]-=k,val[i^1]+=k,temp-=k;
if(!temp) break;
}
}
return mf-temp;
}
int bfs()
{
int i,u;
memset(d,0,sizeof(d));
while(!q.empty()) q.pop();
q.push(0),d[0]=1;
while(!q.empty())
{
u=q.front(),q.pop();
for(i=head[u];i!=-1;i=next[i])
{
if(!d[to[i]]&&val[i])
{
d[to[i]]=d[u]+1;
if(to[i]==n+1) return 1;
q.push(to[i]);
}
}
}
return 0;
}
void add(int a,int b,int c)
{
to[cnt]=b;
val[cnt]=c;
next[cnt]=head[a];
head[a]=cnt++;
}
int main()
{
scanf("%d",&n);
int i,j,k;
memset(head,-1,sizeof(head));
for(i=1;i<=n;i++)
{
scanf("%d",&k);
tot+=k;
if(k&1) vx[++tx]=k;
else vy[++ty]=k;
}
for(i=1;i<=tx;i++) add(0,i,vx[i]),add(i,0,0);
for(i=1;i<=ty;i++) add(i+tx,n+1,vy[i]),add(n+1,i+tx,0);
for(i=1;i<=tx;i++)
{
for(j=1;j<=ty;j++)
{
if(gcd(vx[i],vy[j])!=1) continue;
int k=vx[i]*vx[i]+vy[j]*vy[j];
if(int(sqrt(k*1.0)+0.00001)*int(sqrt(k*1.0)+0.00001)==k)
{
add(i,tx+j,1<<30);
add(tx+j,i,0);
}
}
}
while(bfs()) ans+=dfs(0,1<<30);
printf("%d",tot-ans);
return 0;
}
【BZOJ3275】Number 最小割的更多相关文章
- bzoj3275: Number(最小割)
3275: Number 题目:传送门 题解: 双倍经验@bzoj3158 代码: #include<cstdio> #include<cstring> #include< ...
- BZOJ 3275: Number( 最小割 )
S->每个奇数,每个偶数->T各连一条边, 容量为这个数字.然后不能同时选的两个数连容量为+oo的边. 总数-最大流即是答案. 因为满足a2+b2=c2的a,b一定是一奇一偶或者两个偶数, ...
- 【BZOJ-3275&3158】Number&千钧一发 最小割
3275: Number Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 748 Solved: 316[Submit][Status][Discus ...
- 【最小割】【Dinic】bzoj3275 Number
每个点拆点,分别向源/汇连a[i]的边,满足条件的相互连INF的边,答案为sum-maxflow*2. 因为若有几个点不能同时被选,我们要贪心地选择其中和尽量大的部分,这可以由最小割来保证. #inc ...
- bzoj 3275 Number(最小割)
[题意] 给定n个数,要求选出一些数满足 1.存在c,a*a+b*b=c*c 2.gcd(a,b)=1 使得和最大. [思路] 二分图的最大权独立集(可以这么叫么QAQ 先拆点,对于不满足条件的两个 ...
- BZOJ 3275: Number (二分图最小割)
题意 有nnn个数,其中同时满足下面两个条件的数对不能同时选,求选出一些数让和最大. 若两个数aaa,bbb同时满足以下条件,则aaa,bbb不能同时被选 存在正整数ccc,使a∗a+b∗b=c∗ca ...
- 二分图&网络流&最小割等问题的总结
二分图基础: 最大匹配:匈牙利算法 最小点覆盖=最大匹配 最小边覆盖=总节点数-最大匹配 最大独立集=点数-最大匹配 网络流: 技巧: 1.拆点为边,即一个点有限制,可将其转化为边 BZOJ1066, ...
- OPTM-Optimal Marks-SPOJ839最小割
You are given an undirected graph G(V, E). Each vertex has a mark which is an integer from the range ...
- Network Wars-ZOJ2676最小割+01规划
Time Limit: 5 Seconds Memory Limit: 32768 KB Special Judge Network of Byteland consists of n servers ...
随机推荐
- iOS边练边学--UITableViewCell的常见属性设置
// 取消选中的样式(常用) 让当前 cell 按下无反应 cell.selectionStyle = UITableViewCellSelectionStyleNone; // 设置选中的背景色,U ...
- pymongo创建索引、更新、删除
pymongo创建索引.更新.删除 索引创建 ## collection 为数据集合collection.create_Index({'需创建索引字段': 1})collection.ensu ...
- mysql编译安装后各种常见错误集锦
1.ERROR 2013 (HY000): Lost connection to MySQL server at 'reading initial communication packet', sys ...
- 数据库 Oracle监听实例详解
Oracle实例别名 IMCDB = (DESCRIPTION = (ADDRESS = (PROTOCOL = TCP)(HOST = localhost)(PORT = )) (CONNECT_D ...
- Linux Tcl和Expect的安装
一.先安装Tcl 1.下载:tcl版本 8.4.19 http://sourceforge.net/projects/tcl/files/Tcl/8.4.19/tcl8.4.19-src.tar.gz ...
- selenium测试(Java)(三)
控制浏览器: http://www.cnblogs.com/moonpool/p/5657752.html
- vector push_back报错
场景:定义了一个结构体,包含一个vector的成员变量,在给这个vTQ push_back数据的时候报错. typedef struct tag_TQInfo { int iTime; int iMa ...
- java---EL与ONGL的区别
EL表达式: >>单纯在jsp页面中出现,是在四个作用域中取值,page,request,session,application.>>如果在struts环境中,它除了有在上面的 ...
- opengl 模板测试 glStencilOp glStencilFunc
下面来设置蒙板缓存和蒙板测试. 首先我们启用蒙板测试,这样就可以修改蒙板缓存中的值. 下面我们来解释蒙板测试函数的含义: 当你使用glEnable(GL_STENCIL_TEST)启用蒙板测试之后,蒙 ...
- [译]Unity3D内存管理——对象池(Object Pool)
原文地址:C# Memory Management for Unity Developers (part 3 of 3), 其实从原文标题可以看出,这是一系列文章中的第三篇,前两篇讲解了从C#语言本身 ...