问题描述

  快速求素数处点值比较好求积性函数前缀和

  

大致过程

  Step1、求出一定范围内的素数处点值之和(\(g\))

  Step2、利用上面的\(g\)求出一个\(f\)然后用\(f\)求出前缀和

  

具体过程

  (这里约定一下,在下面的内容中用\(p\)表示一个素数,用\(P_i\)表示素数列表中的第\(i\)项)

  这里以求\(\sum \phi(i)\)为例

  首先对于素数\(p\)来说,\(\phi(p)=p-1\)的,因此我们可以快速求出素数处点值的和\(\sum \phi(p)=\sum p - \sum 1\)

  这个时候我们定义
\[
\begin{aligned}
g_{i,j}&=\sum\limits_{k=2}^{i}[k与P_1、P_2、P_3...P_j互质或者就是其中的某个素数]k\\
&=\sum\limits_{k=2}^{i}[k是P_j的素数\ 或\ k的最小质因子>P_j]k\\
\end{aligned}
\]
  初始化\(g_{i,0}=\sum\limits_{k=2}^{i} k\)

  有了这个东西的话我们就可以比较快速的知道某一个范围内的素数处点值的函数值和了

  现在考虑\(g_{i,j}\)怎么求,我们考虑从\(g_{i,j-1}\)推到\(g_{i,j}\)

  (这里的大体思想其实和。。之前在博客里面写到的某道题pxp。。差不多,或者说pxp其实就是洲阁筛的前半部分)

​  

  将具体的含义列出来,我们要做的就是从
\[
满足k<=P_{j-1}的素数\ 或\ k的最小质因子>P_{j-1}的k的和
\]
  推到
\[
满足k<=P_j的素数\ 或\ k的最小质因子>P_j的k的和
\]
  看一下我们要修改的部分,对于前半部分来说应该是加上一个\(P_j\)(如果在范围内的话),对于后半部分来说应该是减去一些数(不满足第二个条件),这些数满足
\[
x=P_j*(一个y满足最小质因子>P_j,并且范围在[P_j,\lfloor\frac{i}{P_j}\rfloor]的数)
\]
  于是乎我们非常愉快地发现后面那个括号里面的那一堆东西的和可以用回\(g\)来容斥一下表示!
\[
\sum y=g_{\lfloor\frac{i}{P_j}\rfloor,j-1}-g_{P_j-1,j-1}
\]
  然后我们就可以由\(g_{i,j-1}\)推到\(g_{i,j}\)啦
\[
g_{i,j}=g_{i,j-1}-P_j(g_{\lfloor\frac{i}{P_j}\rfloor,j-1}-g_{P_j-1,j-1})
\]
​  然而对于不同的积性函数来说,第一步的求法会有一定的差异,也许会有更加简单的求法,反正就是要求出一个函数能够快捷方便滴得到某一个范围内的素数处点值的和就好了

  

  如果一定要写一个通式的话其实就是:
\[
g_{i,j}=g_{i,j-1}-F(P_j)(g_{\lfloor\frac{i}{P_j}\rfloor,j-1}-g_{P_j-1,j-1})
\]
  其中满足\(F\)是一个完全积性函数(因为把\(P_j\)提出来那步需要用到完全积性函数的性质,你并不能保证后面的那堆东西一定和\(P_j\)互质)

  然后\(F\)的话具体看最开始给的要求前缀和的函数在素数处的点值的表达式具体是啥而定,比如在这个例子里面就是\(F(x)=x\)

​   
  
  

  接下来是用这个\(g\)来求\(h\)
\[
h_{i,j}=\sum\limits_{k=2}^{i}[k最小质因子>=P_j]\phi(k)
\]
​  (如果是别的函数的话就换一下后面的\(\phi(k)\)就可以了)

  考虑这样一种枚举方式:

  每一个数我们都可以拆成
\[
(最小质因子)^q*一些别的东西(可以是1)
\]
​  所以我们可以将上面的表达式通过枚举素数以及次方的方式写成这样:
\[
h_{i,j}=\sum_{q}\phi(P_j^q)\cdot h_{\lfloor \frac{i}{P_j^q}\rfloor,j+1}
\]
  然后就可以推\(h_{i,j}\)啦

​  然而。。。直接搞会比较麻烦。。因为这里为了保证复杂度还是需要上面提到的\(i>=P_j^2\)的优化,但是这里没有那么简单,而是需要打上标记

  所以这里写上另一种方式(貌似是min_25筛来着)
\[
h_{i,j}=\sum_{P_k>=P_j}\sum_{q>=1,P_k^q<=i}\phi(P_k^q)\cdot(h_{\lfloor \frac{i}{P_k^q}\rfloor,j+1}+1)
\]
  后面那里要\(+1\)是因为要把\(\phi(P_k^q)\)的部分也算上(否则都是\(一些别的东西\phi(P_k^q*一些别的东西)\))

  然后直接大力搜索就可以了

  边界条件:\(i<=1\)的时候返回\(0\)

  有趣的是,并不需要记忆化ovo

  因为可以说明\(h\)是不会被重复调用的%%%

  然后最后的答案就是\(h_{n,1}+\phi(1)\)啦

  

总的来说

  额其实就是
\[
\begin{aligned}
g_{i,j}&=g_{i,j-1}-F(P_j)(g_{\lfloor\frac{i}{P_j}\rfloor,j-1}-g_{P_j-1,j-1})\\
\\
h_{i,j}&=\sum_{P_k>=P_j}\sum_{q>=1,P_k^q<=n}f(P_k^q)\cdot h_{\lfloor \frac{i}{P_k^q}\rfloor,j+1}
\end{aligned}
\]
​  然后\(F\)是完全积性函数,\(f\)是题目给的是一个积性函数,\(F\)是根据\(f\)在素数处点值的表达式构造的

  大概是这样嗯ovo

  哦然后时间复杂度是\(O(\frac{n^{\frac{3}{4}}}{logn})\)的至于证明的话。。不会qwq

  虽然说思路真的巨无敌绕不过弄懂了的话还是比较好理解的ovo(假装这两句话一点都不矛盾)

  

实现问题

  关于实现的话有这样几个比较重要的点单独拿出来说一下

  

  1.Step1中,关于\(g_{i,j}\)的求解:

  题目中的\(n\)往往很大,\(i\)直接这么枚举的话直接就愉快爆炸了

  这里我们可以发现一个性质,就是我们其实只用关注第一维的\(i\)满足\(i \in \{\lfloor \frac{n}{x} \rfloor|x \in [1,n]\}\)的\(g_{i...}\)值

  我们将这个集合记为\(S\),那么是有\(|S|=2\sqrt n\)的,在具体实现的时候,我们可以先离散化一下,需要调用的时候再映射回去就好了

  为什么我们可以这么做呢?看回递推式中我们需要的\(g\)的第一维,前一部分是\(\lfloor \frac{i}{P_j} \rfloor\),这是\(\in S\)的,后一部分是\(P_j-1\),因为\(P_j\)我们限制是\(< \sqrt n\)的,所以\(P_j-1\in S\),所以只有\(i\in S\)的\(g_{i,...}\)才是我们实际需要算的值

  

  2.Step2中,关于\(h_{i,j}\)的求解:

​  同样的,如果第一维直接枚举\(n\)的话简直炸成烟花

  这里观察一下当\(i<P_j\)的情况,会发现当\(i<P_j^2\)的时候,能算进来的只有\(且>=P_j且<=i\)的质数处的函数值,所以这一部分的和可以直接用\(g_{i,max+1}-g_{P_j-1,max+1}\)表示,其中\(max\)是素数列表的长度

  所以枚举的时候只枚举到\(P_j^2<=i\),然后最后判断一下如果存在\(i<P_j^2\)这种情况的话,就把后面整段的值一起加进返回值里,也就是直接加上\(g_{i,max+1}-g_{P_j-1,max+1}\)

  
  3.关于数组大小的问题。。因为关键位置的集合\(S\)的大小是\(2\sqrt n\),所以相关数组要开\(2\sqrt n\)而不是\(\sqrt n\)

  

代码的话

  看这题好了 Portal -->【SPOJ】DIVCNTK

【learning】洲阁筛的更多相关文章

  1. 【Learning】积性函数前缀和——洲阁筛(min_25写法)

    问题描述 洲阁筛解决的问题主要是\(n\)范围较大的积性函数前缀和. ​ 已知一积性函数\(f(i)\),求\(\sum_{i=1}^nf(i)\). \(n\leq10^{12}\). 求解方法 如 ...

  2. 杜教筛进阶+洲阁筛讲解+SPOJ divcnt3

    Part 1:杜教筛进阶在了解了杜教筛基本应用,如$\sum_{i=1}^n\varphi(i)$的求法后,我们看一些杜教筛较难的应用.求$\sum_{i=1}^n\varphi(i)*i$考虑把它与 ...

  3. 【XSY3042】石像 拓扑排序 状压DP 洲阁筛

    题目大意 有 \(n\) 个整数 \(a_1,a_2,\ldots,a_n\),每个数的范围是 \([1,m]\).还有 \(k\) 个限制,每个限制 \(x_i,y_i\) 表示 \(a_{x_i} ...

  4. 洲阁筛 & min_25筛学习笔记

    洲阁筛 给定一个积性函数$F(n)$,求$\sum_{i = 1}^{n}F(n)$.并且$F(n)$满足在素数和素数次幂的时候易于计算. 显然有: $\sum_{i = 1}^{n} F(n) = ...

  5. 模板 - 洲阁筛 + min25筛

    好像在某些情况下杜教筛会遇到瓶颈,先看着.暑假学一些和队友交错的知识的同时开这个大坑.

  6. LOJ6053 简单的函数 【Min_25筛】【埃拉托斯特尼筛】

    先定义几个符号: []:若方括号内为一个值,则向下取整,否则为布尔判断 集合P:素数集合. 题目分析: 题目是一个积性函数.做法之一是洲阁筛,也可以采用Min_25筛. 对于一个可以进行Min_25筛 ...

  7. [NOI2016]循环之美(杜教筛)

    首先要求每个数互不相等,故有$x\perp y$. 可以发现$\frac{x}{y}$在$k$进制下为纯循环小数的充要条件为$x\cdot k^{len}\equiv x(mod\ y)$,即$y\p ...

  8. min25筛学习笔记

    min25筛简介:用来求积性函数F(x)前缀和的,复杂度O(n0.75/logn),大概能求n<=1010. 记一个数x的最小质因子为R(x),所以当x不为质数时,R(x)<=√x这是废话 ...

  9. min_25筛入门

    目录 1.什么是min_25筛 2.前置知识 2.1.数论函数 2.2.埃拉托色尼筛 2.3.欧拉筛 3.min_25筛 3.1.计算质数贡献 3.2.计算总贡献 3.3.实现 4.例题 4.1.[L ...

随机推荐

  1. 180718-jar包执行传参使用小结

    jar包执行时传参的使用姿势 虽说我们现在大多不太直接使用jar包运行方式,目前比较主流的是将自己的服务丢在某个容器中(如tomcat,jetty等)运行,比如我之前所属的电商公司,就是将项目打包为w ...

  2. jmeter接口测试实例:带参数、带token

      测试内容简介: 1.get请求,无参数 2.get请求,参数为第一条响应中的id 3.get请求,带token 结构图:     下面进行详解: 一.添加cookie管理器等     1.添加ht ...

  3. sql 命令使用简单记录

    半个月前就想记下用过的SQL命令的!!!     主题: 按时间查询: https://blog.csdn.net/hejpyes/article/details/41863349   左关联: se ...

  4. [C++]C++得到最大的int值

    要得到最大的int值: 利用(unsigned int)-1,这样得到的就是unsigned int表示的最大值, int值只是比unsigned int多一位符号位,所以对(unsigned int ...

  5. java计算两个日期之间的天数,排除节假日和周末

    如题所说,计算两个日期之前的天数,排除节假日和周末.这里天数的类型为double,因为该功能实现的是请假天数的计算,有请一上午假的为0.5天. 不够很坑的是每个日期都要查询数据库,感觉很浪费时间. 原 ...

  6. jquery on函数和prop与attr区别

    一.jquery on()方法 1.语法 2.例子 $(document).ready(function(){ $("p").on("click",functi ...

  7. mysql系列学习

    # 帮助help create user;# 查看当前用户select user();# 创建用户create user 'egon'@'localhost' identified by '123'; ...

  8. 微软职位内部推荐-Principal Development Lead - SharePoint

    微软近期Open的职位: SharePoint is a multi-billion dollar enterprise business that has grown from an on-prem ...

  9. 用 Python 构建一个极小的区块链

    虽然有些人认为区块链是一个早晚会出现问题的解决方案,但是毫无疑问,这个创新技术是一个计算机技术上的奇迹.那么,究竟什么是区块链呢? 区块链 以比特币(Bitcoin)或其它加密货币按时间顺序公开地记录 ...

  10. 按照Right-BICEP要求设计的测试用例

    测试用例: 测试方法:Right-BICEP 测试要求: Right-结果是否正确? B-是否所有的边界条件都是正确的? P-是否满足性能要求? 题目是否有重复? 数量是否可定制? 数值范围是否可定制 ...