【BZOJ4540】【HNOI2016】序列(莫队)

题面

BZOJ

洛谷

Description

  给定长度为n的序列:a1,a2,…,an,记为a[1:n]。类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,…,ar-

1,ar。若1≤l≤s≤t≤r≤n,则称a[s:t]是a[l:r]的子序列。现在有q个询问,每个询问给定两个数l和r,1≤l≤r

≤n,求a[l:r]的不同子序列的最小值之和。例如,给定序列5,2,4,1,3,询问给定的两个数为1和3,那么a[1:3]有

6个子序列a[1:1],a[2:2],a[3:3],a[1:2],a[2:3],a[1:3],这6个子序列的最小值之和为5+2+4+2+2+2=17。

Input

  输入文件的第一行包含两个整数n和q,分别代表序列长度和询问数。接下来一行,包含n个整数,以空格隔开

,第i个整数为ai,即序列第i个元素的值。接下来q行,每行包含两个整数l和r,代表一次询问。

Output

  对于每次询问,输出一行,代表询问的答案。

Sample Input

5 5

5 2 4 1 3

1 5

1 3

2 4

3 5

2 5

Sample Output

28

17

11

11

17

HINT

1 ≤N,Q ≤ 100000,|Ai| ≤ 10^9

题解

我其实本来不想写莫队来着

但是在网上找题解都是莫队

无奈。。。我也写莫队。。

莫队的重点就在于怎么\(O(1)\)转移状态

假设我们已经求出了\([L+1,R]\)的答案

现在要扩展到\([L,R]\)

考虑新产生的\([L..L],[L..L+1]...,[L...R]\)的答案

我们先找到这段区间的最小值,假设其位置是\(p\)

那么右端点在\([p,R]\)的子序列的贡献都是\(a[p]\)

接下来呢?把\([L,p-1]\)继续考虑?

但是我们要做到转移\(O(1)\),所以考虑怎么优化

我们设\(f[i]\)表示确定左端点为\(i\)时,到后面所有位置的贡献

利用单调栈求出右侧第一个比\(i\)位置小的数的位置\(R[i]\)

\([i,R[i]-1]\)的贡献就是\(a[i]\),而\([R[i],n]\)的贡献则与\(i\)无关,

只与\(R[i]\)有关,因此,我们得到转移

\[f[i]=f[R[i]]+(R[i]-i)*a[i]
\]

所以,此时\([L,p)\)的贡献就是\(f[L]-f[p]\)

考虑右侧的贡献同理

综上,时间复杂度\(O(n\sqrt{n})\)

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 111111
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int n,q,blk;
int L[MAX],R[MAX],S[MAX],top,a[MAX],lg[MAX];
ll f[MAX],g[MAX],ans[MAX],Ans;
struct Query{int i,l,r,blk;}Q[MAX];
bool operator<(Query a,Query b){if(a.blk!=b.blk)return a.blk<b.blk;return a.r<b.r;}
struct STable
{
int p[18][MAX];
void pre()
{
for(int j=1;j<=lg[n];++j)
for(int i=1;i+(1<<(j-1))<=n;++i)
p[j][i]=a[p[j-1][i]]<=a[p[j-1][i+(1<<(j-1))]]?p[j-1][i]:p[j-1][i+(1<<(j-1))];
}
int Query(int l,int r)
{
int k=lg[r-l+1];
return a[p[k][l]]<=a[p[k][r-(1<<k)+1]]?p[k][l]:p[k][r-(1<<k)+1];
}
}ST;
ll CalcL(int l,int r)
{
int p=ST.Query(l,r);
return 1ll*(r-p+1)*a[p]+g[l]-g[p];
}
ll CalcR(int l,int r)
{
int p=ST.Query(l,r);
return 1ll*(p-l+1)*a[p]+f[r]-f[p];
}
int main()
{
n=read();q=read();blk=sqrt(n);
for(int i=1;i<=n;++i)a[i]=read();
for(int i=1;i<=n;++i)
{
while(top&&a[S[top]]>a[i])--top;
L[i]=S[top];
S[++top]=i;
}
for(int i=1;i<=n;++i)f[i]=f[L[i]]+1ll*(i-L[i])*a[i];
S[top=0]=n+1;
for(int i=n;i;--i)
{
while(top&&a[S[top]]>a[i])--top;
R[i]=S[top];
S[++top]=i;
}
for(int i=n;i>=1;--i)g[i]=g[R[i]]+1ll*(R[i]-i)*a[i];
for(int i=1;i<=q;++i)
{
int l=read(),r=read();
Q[i]=(Query){i,l,r,(l-1)/blk};
}
for(int i=1;i<=n;++i)ST.p[0][i]=i;
for(int i=2;i<=n;++i)lg[i]=lg[i>>1]+1;
ST.pre();
sort(&Q[1],&Q[q+1]);
for(int i=1,L=1,R=0;i<=q;++i)
{
while(R<Q[i].r)Ans+=CalcR(L,++R);
while(L>Q[i].l)Ans+=CalcL(--L,R);
while(R>Q[i].r)Ans-=CalcR(L,R--);
while(L<Q[i].l)Ans-=CalcL(L++,R);
ans[Q[i].i]=Ans;
}
for(int i=1;i<=q;++i)printf("%lld\n",ans[i]);
return 0;
}

【BZOJ4540】【HNOI2016】序列(莫队)的更多相关文章

  1. [BZOJ4540][HNOI2016]序列 莫队

    4540: [Hnoi2016]序列 Time Limit: 20 Sec  Memory Limit: 512 MB Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n ...

  2. [bzoj4540][Hnoi2016][序列] (莫队算法+单调栈+st表)

    Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,…,ar-1,ar.若1≤l≤s≤t≤r≤n,则称a ...

  3. [HNOI2016]序列(莫队,RMQ)

    [HNOI2016]序列(莫队,RMQ) 洛谷  bzoj 一眼看不出来怎么用数据结构维护 然后还没修改 所以考虑莫队 以$(l,r-1) -> (l,r)$为例 对答案的贡献是$\Sigma_ ...

  4. 【BZOJ4540】[Hnoi2016]序列 莫队算法+单调栈

    [BZOJ4540][Hnoi2016]序列 Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,…,a ...

  5. BZOj 4540: [Hnoi2016]序列 [莫队 st表 预处理]

    4540: [Hnoi2016]序列 题意:询问区间所有子串的最小值的和 不强制在线当然上莫队啦 但是没想出来,因为不知道该维护当前区间的什么信息,维护前后缀最小值的话不好做 想到单调栈求一下,但是对 ...

  6. BZOJ.4540.[HNOI2016]序列(莫队/前缀和/线段树 单调栈 RMQ)

    BZOJ 洛谷 ST表的一二维顺序一定要改过来. 改了就rank1了哈哈哈哈.自带小常数没办法. \(Description\) 给定长为\(n\)的序列\(A_i\).\(q\)次询问,每次给定\( ...

  7. bzoj 4540: [Hnoi2016]序列 莫队

    题目: 给定长度为n的序列:a1,a2,-,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,-,ar- 1,ar.若1≤l≤s≤t≤r≤n,则称a[s:t]是a ...

  8. 洛谷P3246 [HNOI2016]序列 [莫队]

    传送门 思路 看到可离线.无修改.区间询问,相信一定可以想到莫队. 然而,莫队怎么转移是个大问题. 考虑\([l,r]\rightarrow[l,r+1]\)时答案会怎样变化?(左端点变化时同理) \ ...

  9. BZOJ 4540 [Hnoi2016]序列 | 莫队 详细题解

    传送门 BZOJ 4540 题解 --怎么说呢--本来想写线段树+矩阵乘法的-- --但是嘛--yali的机房太热了--困--写不出来-- 于是弃疗,写起了莫队.(但是我连莫队都想不出来!) 首先用单 ...

  10. BZOJ4540 Hnoi2016 序列 【莫队+RMQ+单调栈预处理】*

    BZOJ4540 Hnoi2016 序列 Description 给定长度为n的序列:a1,a2,-,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,-,ar- ...

随机推荐

  1. 【JUC源码解析】LinkedBlockingQueue

    简介 一个基于链表的阻塞队列,FIFO的顺序,head指向的元素等待时间最长,tail指向的元素等待时间最短,新元素从队列尾部添加,检索元素从队列头部开始,队列的容量,默认是Integer#MAX_V ...

  2. 【MYSQL备份】利用mysqldump将一个数据库复制到另一个数据库

    假设要将服务器A上的数据库test备份到服务器B 1.在服务器B上新建数据库cp_test mysql> create database cp_test; Query OK, row affec ...

  3. 让系统识别特殊字符的密码(linux)

    mysql -h主机 -u用户 -p密码 当密码是! @ # 等特殊字符是,linux无法直接识别会报错 这种情况下可以参考以下两种方法: 1.-p后面不写密码,直接回车,再输入密码即可 2.用“\” ...

  4. Flask 路由相关操作

    URL Route URL 后接 / 作为目录级访问 URL 后不接 / 作为文件级访问 from flask import Flask app = Flask(__name__) @app.rout ...

  5. 提取验证码到winform上webbroswer和axwebbroswer

    在网上只有webbroswer的代码,所以自己又修改了修改改成axwebbroswer的 public static class yanZhengMaHelp { //webbrowser验证码 pu ...

  6. ffmpeg 踩坑实录 近期使用总结(三)

    一.背景介绍 将ffmpeg运用到项目上已经有一段时间了,趁现在有空赶紧记下来. 二.技术点总结    2.1 实现方式 项目里面主要运用的形式是,在java端,调用操作系统的方法,并执行切片命令. ...

  7. HTTP简单教程

    目录 HTTP简介 HTTP工作原理 HTTP消息结构 客户端请求消息 服务器响应消息 实例 HTTP请求方法 HTTP响应头信息 HTTP状态码 HTTP状态码分类 HTTP状态码列表 HTTP c ...

  8. Python数据结构 将列表作为栈和队列使用

    列表作为栈使用 Python列表方法使得列表作为堆栈非常容易,最后一个插入,最先取出(“后进先出”).要添加一个元素到堆栈的顶端,使用 append() .要从堆栈顶部取出一个元素,使用 pop()  ...

  9. 《图解 HTTP 》阅读 —— 第四章

    第4章 返回结果的HTTP状态码 1XX 接收的请求正在处理 2XX 请求被处理 200 请求成功 204 请求成功,但是没有返回数据 206 客户端进行了范围请求 3XX 重定向 301 永久性重定 ...

  10. Focalprice李培亮:梦想让人在我店里排队

    [亿邦动力网讯]4月3日消息,外贸B2C平台Focalprice总裁李培亮日前亮相亿邦动力网联合河南省商务厅举办的“第九届中国中小企业电子商务大会暨2014中国(河南)跨境贸易电子商务峰会”,表达自己 ...