[TJOI2008]彩灯 线性基
题面
题解
题意:给定n个01串,求互相异或能凑出多少不同的01串。
线性基的基础应用。
对于线性基中的01串,如果我们取其中一些凑成一个新的01串,有一个重要的性质:任意2个不同方案凑出的01串也不相同。
因此我们只需要求出给定01串的线性基大小,然后求出有多少搭配方案即可,方案数即为\(2^{tot} - 1\)
#include<bits/stdc++.h>
using namespace std;
#define R register int
#define AC 55
#define LL long long
#define p 2008
int n, m, ans;
LL f[AC], maxn;
char s[AC];
inline int qpow(int x, int have)
{
int rnt = 1;
while(have)
{
if(have & 1) rnt = rnt * x % p;
x = x * x % p, have >>= 1;
}
return rnt;
}
void work()
{
scanf("%d%d", &n, &m), maxn = 1LL << 50;
for(R i = 1; i <= m; i ++)
{
scanf("%s", s + 1);
LL x = 0;
for(R j = 1; j <= n; j ++) x = (x << 1) + (s[j] == 'O' ? 1 : 0);
maxn = 1LL << 50;
for(R j = 50; ~j; j --, maxn >>= 1)
{
if(!(x & maxn)) continue;
if(!f[j]) {f[j] = x, ++ ans; break;}
else x ^= f[j];
}
}
printf("%d\n", qpow(2, ans));
}
int main()
{
// freopen("in.in", "r", stdin);
work();
// fclose(stdin);
return 0;
}
[TJOI2008]彩灯 线性基的更多相关文章
- 洛谷P3857 [TJOI2008]彩灯 [线性基]
题目传送门 彩灯 题目描述 Peter女朋友的生日快到了,他亲自设计了一组彩灯,想给女朋友一个惊喜.已知一组彩灯是由一排N个独立的灯泡构成的,并且有M个开关控制它们.从数学的角度看,这一排彩灯的任何一 ...
- luogu 3857 [TJOI2008]彩灯 线性基
可以将每一个开关控制的灯的序列看作是0/1组成的二进制. 由于灯的开和关是满足异或的性质的,所以直接求一下线性基大小即可. 答案为 $2^{size}.$ #include <cstdio> ...
- 【题解】 luogu 3857 [TJOI2008]彩灯 (线性基)
luogu3857,懒得复制 Solution: 裸的线性基,往里面添加数,记录添加个数\(sum\),快速幂输出\(2^{sum}\)即可 Code: //It is coded by Ning_M ...
- 洛谷P3857 [TJOI2008]彩灯(线性基)
传送门 线性基裸题 直接把所有的状态都带进去建一个线性基 然后答案就是$2^{cnt}$($cnt$代表线性基里数的个数) //minamoto #include<cstdio> #inc ...
- 洛谷3857 [TJOI2008]彩灯
题目描述 已知一组彩灯是由一排N个独立的灯泡构成的,并且有M个开关控制它们.从数学的角度看,这一排彩灯的任何一个彩灯只有亮与不亮两个状态,所以共有2N个样式.由于技术上的问题,Peter设计的每个开关 ...
- BZOJ 2844 albus就是要第一个出场 ——高斯消元 线性基
[题目分析] 高斯消元求线性基. 题目本身不难,但是两种维护线性基的方法引起了我的思考. void gauss(){ k=n; F(i,1,n){ F(j,i+1,n) if (a[j]>a[i ...
- BZOJ 2115 [Wc2011] Xor ——线性基
[题目分析] 显然,一个路径走过两边是不需要计算的,所以我么找到一条1-n的路径,然后向该异或值不断异或简单环即可. 但是找出所有简单环是相当复杂的,我们只需要dfs一遍,找出所有的环路即可,因为所有 ...
- BZOJ 3105 [CQOI2013]新Nim游戏 ——线性基
[题目分析] 神奇的题目,两人都可以第一次取走足够多堆的石子. nim游戏的规则是,如果异或和为0,那么就先手必输,否则先手有必胜策略. 所以只需要剩下一群异或和为0就可以了. 先排序,线性基扫一遍即 ...
- BZOJ 2460 [BeiJing2011]元素 ——线性基
[题目分析] 线性基,由于最多有63个,只需要排序之后,动态的去维护线性基即可. [代码] #include <cstdio> #include <cstring> #incl ...
随机推荐
- 可能是全网首个支持阿里云Elasticsearch Xapck鉴权的Skywalking
可能是全网首个支持阿里云Elasticsearch Xapck鉴权的Skywalking 对Skywalking有兴趣的同学参见:年轻人的第一个APM-Skywalking 之前在搭建Skywalki ...
- linux下,将一个目录中的图片文件合成为gif图片
# {} 为文件所在目录位置 # {} 为gif图片位置 convert -delay -depth -layers optimize -quality -loop {} {}
- 前端--再遇jQuery
一.属性 属性(如果你的选择器选出了多个对象,那么默认只会返回第一个属性) attr(属性名|属性值) --一个参数是获取属性的值,两个参数是设置属性值 --点击图片加载示例 removeAttr(属 ...
- stl源码分析之priority queue
前面两篇介绍了gcc4.8的vector和list的源码实现,这是stl最常用了两种序列式容器.除了容器之外,stl还提供了一种借助容器实现特殊操作的组件,谓之适配器,比如stack,queue,pr ...
- HWI的安装
一.安装的过程 hwi的安装过程: 1.解压src源码包:tar -zvxf apache-hive-1.2.2-src.tar.gz 2.进到HWI目录下:cd /home/bigdata/apac ...
- IO模型浅析-阻塞、非阻塞、IO复用、信号驱动、异步IO、同步IO
最近看到OVS用户态的代码,在接收内核态信息的时候,使用了Epoll多路复用机制,对其十分不解,于是从网上找了一些资料,学习了一下<UNIX网络变成卷1:套接字联网API>这本书对应的章节 ...
- 印度电商Snapdeal获投$1.34亿 eBay领投
据消息人士透露,eBay领投1.337亿美元,投资印度最大在线购物网站Snapdeal,最终或有可能全权收购该网站.据悉,在此次投资中,大部分资金来自eBay. 今年1月,曾有报道称,Snapdeal ...
- linux 命令自动补全包
linux 其他知识目录 rhel7如果使用最小化安装后,tab键默认是不能自动补全命令的 执行yum install bash-completion之后重启系统正常.
- VMware提示无法打开内核设备 \\.\Global\vmx86: 系统找不到指定的文件解决方案
1.右键单击[我的电脑],选择[管理] 2.在[服务]中找到VMware Workstation Server服务右键启动
- unrecognized selector send to instancd 快速定位
1.在Debug菜单中Breakpoints->Create Symbolic Breakpoint; 2.在Symbolic中填写方法签名: -[NSObject(NSObject) does ...