1030 - Discovering Gold
| Time Limit: 2 second(s) | Memory Limit: 32 MB |
You are in a cave, a long cave! The cave can be represented by a 1 x N grid. Each cell of the cave can contain any amount of gold.
Initially you are in position 1. Now each turn you throw a perfect 6 sided dice. If you get X in the dice after throwing, you add X to your position and collect all the gold from the new position. If your new position is outside the cave, then you keep throwing again until you get a suitable result. When you reach the Nth position you stop your journey. Now you are given the information about the cave, you have to find out the expected number of gold you can collect using the given procedure.
Input
Input starts with an integer T (≤ 100), denoting the number of test cases.
Each case contains a blank line and an integer N (1 ≤ N ≤ 100) denoting the dimension of the cave. The next line contains N space separated integers. The ith integer of this line denotes the amount of gold you will get if you come to the ith cell. You may safely assume that all the given integers will be non-negative and no integer will be greater than 1000.
Output
For each case, print the case number and the expected number of gold you will collect. Errors less than 10-6 will be ignored.
Sample Input |
Output for Sample Input |
|
3 1 101 2 10 3 3 3 6 9 |
Case 1: 101.0000000000 Case 2: 13.000 Case 3: 15 |
1 #include<stdio.h>
2 #include<string.h>
3 #include<stdlib.h>
4 #include<algorithm>
5 #include<iostream>
6 #include<math.h>
7 #include<queue>
8 #include<stack>
9 using namespace std;
10 double cost[105];
11 double dp[105];
12 int main(void)
13 {
14 int i,j,k;
15 scanf("%d",&k);
16 int s;
17 for(s=1; s<=k; s++)
18 {
19 int n;
20 scanf("%d",&n);
21 for(i=1; i<=n; i++)
22 {
23 scanf("%lf",&cost[i]);
24 }
25 memset(dp,0,sizeof(dp));
26 dp[1]=1;double sum=0;
27 for(i=1;i<=n;i++)
28 {
29 int t=min(i+6,n);
30 for(j=i+1;j<=t;j++)
31 {
32 dp[j]+=1.0*dp[i]/(t-i);
33 }
34 sum+=cost[i]*dp[i];
35 }
36 printf("Case %d: %.10f\n",s,sum);
37 }
38 return 0;
39 }
1030 - Discovering Gold的更多相关文章
- LightOJ - 1030 Discovering Gold —— 期望
题目链接:https://vjudge.net/problem/LightOJ-1030 1030 - Discovering Gold PDF (English) Statistics For ...
- [LOJ 1030] Discovering Gold
B - Discovering Gold Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu ...
- LightOJ 1030 Discovering Gold(期望)
Description You are in a cave, a long cave! The cave can be represented by a 1 x N grid. Each cell o ...
- LightOj 1030 - Discovering Gold(dp+数学期望)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1030 题意:在一个1*n 的格子里,每个格子都有相应的金币数,走到相应格子的话,就会得 ...
- LightOJ 1030 Discovering Gold (概率/期望DP)
题目链接:LightOJ - 1030 Description You are in a cave, a long cave! The cave can be represented by a \(1 ...
- Light OJ 1030 - Discovering Gold(概率dp)
题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1030 题目大意:有一个很长的洞穴, 可以看做是1-n的格子.你的起始位置在1的 ...
- LightOJ 1030 - Discovering Gold - [概率DP]
题目链接:https://cn.vjudge.net/problem/LightOJ-1030 You are in a cave, a long cave! The cave can be repr ...
- LightOJ 1030 Discovering Gold(期望 概率)
正推,到达i的概率为p[i],要注意除了1和n外,到达i的概率并不一定为1 概率表达式为p[i] += p[j] / min(n - j, 6) 从j带过来的期望为exp[i] += exp[j] / ...
- Light OJ 1030 - Discovering Gold
题目大意: 给你一个1*N的方格,你初始位置是在1,给你一个骰子,假设你现在的位置是X,你投掷一个骰子掷的点数是y, 那么你的新位置就是 X+y, 并且你可以得到新位置的宝藏.假如X+y > N ...
随机推荐
- 充分利用nginx的reload功能平滑的上架和更新业务
以前更新我们都要停服务更新,不管什么时候更新,都可能有客户在访问,体验不好,二是如果有数据传输,可能会造成数据丢失. nginx reload可以不间断更新配置文件,原理就是当我们修改配置文件发起re ...
- 微信小程序调试bug-日程计划类
首先嘤嘤嘤一下,破bug,改了我一天,摔(′д` )-彡-彡 写的个微信小程序 逻辑如下,正常的功能是,我可以新建,修改,查询(按筛选条件),删除某个日程信息,后面贴个页面,我的bug出现就很搞笑了, ...
- c#表格序号列
<asp:BoundField HeaderText="序号" /> OnRowCreated="gridview_RowCreated" prot ...
- 25. Linux下gdb调试
1.什么是core文件?有问题的程序运行后,产生"段错误 (核心已转储)"时生成的具有堆栈信息和调试信息的文件. 编译时需要加 -g 选项使程序生成调试信息: gcc -g cor ...
- TCP中的TIME_WAIT状态
TIME_WAIT的存在有两大理由 1.可靠地实现TCP全双工连接的终止 2.允许老的可重复分节在网络中消失. 对于理由1,我们知道TCP结束需要四次挥手,若最后一次的客户端的挥手ACK丢失(假设是客 ...
- 编程之美Q1
题目 和数书页有点类似,就直接数吧 #include<iostream> using namespace std; class q1 { public: size_t func(size_ ...
- GO 时间处理
比较大小 比较大小 先把当前时间格式化成相同格式的字符串,然后使用time的Before, After, Equal 方法即可. time1 := "2015-03-20 08:50:29& ...
- mysql锁相关讲解及其应用
一.mysql的锁类型 了解Mysql的表级锁 了解Mysql的行级锁 (1) 共享/排它锁(Shared and Exclusive Locks) 共享锁和排他锁是InnoDB引擎实现的标准行级别锁 ...
- Kafaka相关命令
开启zookeeper命令(备注:先进入zookeeper的bin目录) ./zkServer.sh start 关闭zookeeper命令(备注:先进入zookeeper的bin目录) ./zkSe ...
- logstash 正则表达式
正则表达式 3. 使用给定好的符号去表示某个含义 4. 例如.代表任意字符 5. 正则符号当普通符号使用需要加反斜杠 正则的发展 6. 普通正则表达式 7. 扩展正则表达式 普通正则表达式 . 任意一 ...