Mroueh Y, Sercu T, Goel V, et al. McGan: Mean and Covariance Feature Matching GAN[J]. arXiv: Learning, 2017.

@article{mroueh2017mcgan:,

title={McGan: Mean and Covariance Feature Matching GAN},

author={Mroueh, Youssef and Sercu, Tom and Goel, Vaibhava},

journal={arXiv: Learning},

year={2017}}

利用均值和协方差构建IPM, 获得相应的mean GAN 和 covariance gan.

主要内容

IPM:

\[d_{\mathscr{F}} (\mathbb{P}, \mathbb{Q}) = \sup_{f \in \mathscr{F}} |\mathbb{E}_{x \sim \mathbb{P}} f(x) - \mathbb{E}_{x \sim \mathbb{Q}} f(x)|.
\]

当\(\mathscr{F}\)是对称空间, 即\(f \in \mathscr{F} \rightarrow - f \in \mathscr{F}\),可得

\[d_{\mathscr{F}} (\mathbb{P}, \mathbb{Q}) = \sup_{f \in \mathscr{F}} \big \{\mathbb{E}_{x \sim \mathbb{P}} f(x) - \mathbb{E}_{x \sim \mathbb{Q}} f(x) \big\}.
\]

Mean Matching IPM

\[\mathscr{F}_{v,w,p}:= \{f(x)=\langle v, \Phi_w(x) \rangle | v\in \mathbb{R}^m, \|v\|_p \le 1, \Phi_w:\mathcal{X} \rightarrow \mathbb{R}^m, w \in \Omega\},
\]

其中\(\|\cdot \|_p\)表示\(\ell_p\)范数, \(\Phi_w\)往往用网络来表示, 我们可通过截断\(w\)来使得\(\mathscr{F}_{v,w,p}\)为有界线性函数空间(有界从而使得后面推导中\(\sup\)成为\(\max\)).



其中

\[\mu_w(\mathbb{P})= \mathbb{E}_{x \sim \mathbb{P}} [\Phi_w(x)] \in \mathbb{R}^m.
\]

最后一个等式的成立是因为:

\[\|x\|_* = \max \{\langle v, x \rangle | \|v\| \le 1\},
\]

又\(\| \cdot \|_p\)的对偶范数是\(\|\cdot\|_q, \frac{1}{p}+\frac{1}{q}=1\).

prime

整个GAN的训练过程即为

\[\tag{3}
\min_{g_\theta} \max_{w \in \Omega} \max_{v, \|v\|_p \le 1} \mathscr{L}_{\mu} (v,w,\theta),
\]

其中

\[\mathscr{L}_{\mu} (v,w,\theta) = \langle v, \mathbb{E}_{x \in \mathbb{P}_r} \Phi_w(x) - \mathbb{E}_{z \sim p(z)} \Phi_w(g_{\theta} (z)) \rangle.
\]

估计形式为

dual

也有对应的dual形态

\[\tag{4}
\min_{g_\theta} \max_{w \in \Omega} \|\mu_w(\mathbb{P}_r) - \mu_w (\mathbb{P}_{\theta})\|_q.
\]

Covariance Feature Matching IPM

\[\mathscr{F}_{U, V,w} := \{f(x)= \sum_{j=1}^k \langle u_j, \Phi_w(x) \rangle \langle v_j, \Phi_w(x)\rangle, \langle u_i, u_j \rangle = \langle v_i, v_j \rangle =0, i \not = j, else \:1 \},
\]

等价于

\[\mathscr{F}_{U, V,w} := \{f(x)= \langle U^T \Phi_w(x), V^T\Phi_w(x) \rangle, U^TU=I_k, V^TV=I_k, w \in \Omega \}.
\]

并有

其中\([A]_k\)表示\(A\)的\(k\)阶近似, 如果\(A = \sum_i \sigma_iu_iv_i^T\), \(\sigma_1\ge \sigma_2,\ldots\), 则\([A]_k=\sum_{i=1}^k \sigma_i u_iv_i^T\). \(\mathcal{O}_{m,k} := \{M \in \mathbb{R}^{m \times k} | M^TM = I_k \}\), \(\|A\|_*=\sum_i \sigma_i\)表示算子范数.

prime

\[\tag{6}
\min_{g_\theta} \max_{w \in \Omega} \max_{U,V \in \mathcal{P}_{m, k}} \mathscr{L}_{\sigma} (U, V,w,\theta),
\]

其中

\[\mathscr{L}_{\sigma} (U,V,w,\theta) = \mathbb{E}_{x \sim \mathbb{P}_r} \langle U^T \Phi_w(x), V^T\Phi_w(x) \rangle- \mathbb{E}_{z \sim p_z} \langle U^T \Phi_w(g_{\theta}(z)), V^T\Phi_w(g_{\theta}(z)) \rangle.
\]

采用下式估计

dual

\[\tag{7}
\min_{g_{\theta}} \max_{w \in \Omega} \| [\Sigma_w(\mathbb{P}_r) - \Sigma_w(\mathbb{P}_{\theta})]_k\|_*.
\]

注: 既然\(\Sigma_w(\mathbb{P}_r) - \Sigma_w(\mathbb{P}_{\theta})\)是对称的, 为什么\(U \not =V\)? 因为虽然其对称, 但是并不(半)正定, 所以\(v_i=-u_i\)也是有可能的.

算法



代码

未经测试.



import torch
import torch.nn as nn
from torch.nn.functional import relu
from collections.abc import Callable def preset(**kwargs):
def decorator(func):
def wrapper(*args, **nkwargs):
nkwargs.update(kwargs)
return func(*args, **nkwargs)
wrapper.__doc__ = func.__doc__
wrapper.__name__ = func.__name__
return wrapper
return decorator class Meanmatch(nn.Module): def __init__(self, p, dim, dual=False, prj='l2'):
super(Meanmatch, self).__init__()
self.norm = p
self.dual = dual
if dual:
self.dualnorm = self.norm
else:
self.init_weights(dim)
self.projection = self.proj(prj) @property
def dualnorm(self):
return self.__dualnorm @dualnorm.setter
def dualnorm(self, norm):
if norm == 'inf':
norm = float('inf')
elif not isinstance(norm, float):
raise ValueError("Invalid norm") p = 1 / (1 - 1 / norm)
self.__dualnorm = preset(p=p, dim=1)(torch.norm) def init_weights(self, dim):
self.weights = nn.Parameter(torch.rand((1, dim)),
requires_grad=True) @staticmethod
def _proj1(x):
u = x.max()
if u <= 1.:
return x
l = 0.
c = (u + l) / 2
while (u - l) > 1e-4:
r = relu(x - c).sum()
if r > 1.:
l = c
else:
u = c
c = (u + l) / 2
return relu(x - c) @staticmethod
def _proj2(x):
return x / torch.norm(x) @staticmethod
def _proj3(x):
return x / torch.max(x) def proj(self, prj):
if prj == "l1":
return self._proj1
elif prj == "l2":
return self._proj2
elif prj == "linf":
return self._proj3
else:
assert isinstance(prj, Callable), "Invalid prj"
return prj def forward(self, real, fake):
temp = (real - fake).mean(dim=1)
if self.dual:
return self.dualnorm(temp)
elif not self.training and self.dual:
raise TypeError("just for training...")
else:
self.weights.data = self.projection(self.weights.data) #some diff here!!!!!!!!!!
return self.weights @ temp class Covmatch(nn.Module): def __init__(self, dim, k):
super(Covmatch, self).__init__()
self.init_weights(dim, k) def init_weights(self, dim, k):
temp1 = torch.rand((dim, k))
temp2 = torch.rand((dim, k))
self.U = nn.Parameter(temp1, requires_grad=True)
self.V = nn.Parameter(temp2, requires_grad=True) def qr(self, w):
q, r = torch.qr(w)
sign = r.diag().sign()
return q * sign def update_weights(self):
self.U.data = self.qr(self.U.data)
self.V.data = self.qr(self.V.data) def forward(self, real, fake):
self.update_weights()
temp1 = real @ self.U
temp2 = real @ self.V
temp3 = fake @ self.U
temp4 = fake @ self.V
part1 = torch.trace(temp1 @ temp2.t()).mean()
part2 = torch.trace(temp3 @ temp4.t()).mean()
return part1 - part2

McGan: Mean and Covariance Feature Matching GAN的更多相关文章

  1. Computer Vision_33_SIFT:Robust scale-invariant feature matching for remote sensing image registration——2009

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  2. Computer Vision_33_SIFT:Remote Sensing Image Registration With Modified SIFT and Enhanced Feature Matching——2017

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  3. [OpenCV] Feature Matching

    得到了杂乱无章的特征点后,要筛选出好的特征点,也就是good matches. BruteForceMatcher FlannBasedMatcher 两者的区别:http://yangshen998 ...

  4. [转]GAN论文集

    really-awesome-gan A list of papers and other resources on General Adversarial (Neural) Networks. Th ...

  5. [论文理解] Good Semi-supervised Learning That Requires a Bad GAN

    Good Semi-supervised Learning That Requires a Bad GAN 恢复博客更新,最近没那么忙了,记录一下学习. Intro 本文是一篇稍微偏理论的半监督学习的 ...

  6. Generative Adversarial Nets[Improved GAN]

    0.背景 Tim Salimans等人认为之前的GANs虽然可以生成很好的样本,然而训练GAN本质是找到一个基于连续的,高维参数空间上的非凸游戏上的纳什平衡.然而不幸的是,寻找纳什平衡是一个十分困难的 ...

  7. (转) GAN论文整理

    本文转自:http://www.jianshu.com/p/2acb804dd811 GAN论文整理 作者 FinlayLiu 已关注 2016.11.09 13:21 字数 1551 阅读 1263 ...

  8. 常见GAN的应用

    深入浅出 GAN·原理篇文字版(完整)|干货 from:http://baijiahao.baidu.com/s?id=1568663805038898&wfr=spider&for= ...

  9. AI佳作解读系列(六) - 生成对抗网络(GAN)综述精华

    注:本文来自机器之心的PaperWeekly系列:万字综述之生成对抗网络(GAN),如有侵权,请联系删除,谢谢! 前阵子学习 GAN 的过程发现现在的 GAN 综述文章大都是 2016 年 Ian G ...

随机推荐

  1. AOP与IOC的概念

    AOP与IOC的概念(即spring的核心) a) IOC:Spring是开源框架,使用框架可以使我们减少工作量,提高工作效率并且它是分层结构,即相对应的层处理对应的业务逻辑,减少代码的耦合度.而sp ...

  2. Linux基础命令---htdigest建立和更新apache服务器摘要

    htdigest htdigest指令用来建立和更新apache服务器用于摘要认证的存放用户认证信息的文件. 此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.   1.语法   ...

  3. 【Services】【Web】【LVS】lvs基础概念

    1.简介 1.1. 作者:张文嵩,就职于阿里 1.2. LVS是基础四层路由.四层交换的软件,他根据请求报文的目标IP和目标PORT将其调度转发至后端的某主机: 1.3. IPTABLES的请求转发路 ...

  4. spring boot 配置属性值获取注解@Value和@ConfigurationProperties比较

    功能比较 :     @ConfigurationProperties  @Value  映射赋值 批量注入配置文件中的属性 一个个指定 松散绑定(松散语法)① 支持 不支持 SpEL② 不支持 支持 ...

  5. 添加用户的jsp页面

    <%@ page contentType="text/html;charset=UTF-8" language="java" %><!-- H ...

  6. 关于for与forEach遍历集合中对集合进行操作的问题

    遍历List集合,在循环中再对List集合进行操作,有时候会遇到ConcurrentModificationException(并发修改异常);其实只有在forEach循环集合再对集合操作会发生异常: ...

  7. Docker从入门到精通(二)——安装Docker

    通过上面文章,我们大概知道了什么是Docker,但那都是文字功夫,具体想要理解,还得实操,于是这篇文章带着大家来手动安装Docker. 1.官方教程 https://docs.docker.com/e ...

  8. 关于python中显存回收的问题

    技术背景 笔者在执行一个Jax的任务中,又发现了一个奇怪的问题,就是明明只分配了很小的矩阵空间,但是在多次的任务执行之后,显存突然就爆了.而且此时已经按照Jax的官方说明配置了XLA_PYTHON_C ...

  9. Mysql资料 主键

    目录 一.简介 二.操作 三.技巧 一.简介 主键意味着表中每一行都应该有可以唯一标识自己的一列(或一组列). 一个顾客可以使用顾客编号列,而订单可以使用订单ID,雇员可以使用雇员ID 或 雇员社会保 ...

  10. Tableau使用折线图和饼图的组合

    一.订单日期拖拽至列-右键天(具体到年月日) 二.订单日期拖拽至筛选器-年月-随机选择一个月的数据 三.创建计算字段-LOD-销售额 {EXCLUDE[类别]:SUM([销售额])} 四.销售额和刚刚 ...