洛谷P7078 [CSP-S2020] 贪吃蛇 题解
比赛里能做出这题的人真的非常厉害,至少他的智商和蛇一样足够聪明。
首先有一个结论:
当前最强的蛇吃了最弱的蛇之后,如果没有变成最弱的蛇,他一定会选择吃!
证明:
假设当前最强的蛇叫石老板。
如果下一条最强的蛇如果依旧是石老板,那肯定不吃白不吃;
如果下一条最强蛇不是石老板,此时最强的蛇没有原先强,最弱的蛇也没原先弱,吃掉后肯定比石老板要弱。也就是说,当前最强的蛇吃了之后,如果会死,也会死在石老板前面。那么这样一来,这条蛇会想尽办法不死,从而石老板也一定能不死。
有了这个结论,一部分蛇可以放心大胆地吃了,但是问题来了,如果吃了之后变成最弱的蛇了,到底选择吃不吃呢?
稍微往后推一推就明白了:
当前最强蛇记为石老板,下一条最强蛇记为喵老板。石老板进食后变成最弱的蛇了,如果喵老板进食后不是最弱的蛇,他就会选择吃(根据开头的结论),这样石老板就凉了,所以石老板当初的选择一定是不吃。
如果喵老板进食后依旧是最弱的蛇,那就会考虑下一条最强蛇的情况,起名为汪老板。同样分两种情况:如果汪老板进食后不是最弱的蛇,那他就会选择吃,这样喵老板就凉了,所以他当初会选择不吃,这样石老板就不会死,那么石老板当初就会选择吃。如果汪老板进食后变成了最弱的蛇,那就再考虑下一条蛇………………
这个问题就变成了一个递归的问题了,直到某条蛇吃了之后不是最弱的蛇或者只能下两条蛇为止。这样,最后一条蛇会选择吃,倒数第二条蛇为了保命会选择不吃,倒数第三条蛇可以放心大胆的吃,倒数第四条蛇会保命选择不吃,倒数第五条蛇可以放心吃………………
这样,石老板选择吃不吃,就和最后一条蛇之间的奇偶性相关了。并且石老板选择不吃,游戏结束,石老板选择吃,游戏也会在下一轮结束(因为喵老板会选择不吃)。
到目前为止,这个题目很清晰了,只需模拟两个阶段即可:
阶段一:所有最强蛇进食后都不是最弱蛇,放心大胆吃!
阶段二:所有最强蛇进食后都是最弱蛇,直到有条蛇可以放心吃为止(吃了后不是最弱或者只剩两条)
阶段一结束时,游戏就基本结束了(根据阶段二的奇偶性看能不能再吃一次)
利用set可以方便地维护最强、最弱蛇,时间复杂度\(O(Tnlogn)\),只能拿 70 分,代码如下:
int a[N];
int main() {
    int _;
    scanf("%d", &_);
    int n;
    for (int cas = 1; cas <= _; cas++) {
        if (cas == 1) {
            scanf("%d", &n);
            for (int i = 1; i <= n; i++) {
                scanf("%d", &a[i]);
            }
        } else {
            int k;
            scanf("%d", &k);
            while (k--) {
                int x, y;
                scanf("%d%d", &x, &y);
                a[x] = y;
            }
        }
        set<pair<int, int> > se;
        for (int i = 1; i <= n; i++) {
            se.insert({a[i], i});
        }
        int flag = 0, ans;
        while (1) {
            if (se.size() == 2) {
                se.erase(se.begin());
                if (flag) {
                    if ((flag - se.size()) % 2) {
                        ans = flag + 1;
                    } else {
                        ans = flag;
                    }
                } else
                    ans = 1;
                break;
            }
            set<pair<int, int> >::iterator it = se.end();
            it--;
            int x = it->first, id = it->second;
            int y = se.begin()->first;
            se.erase(it);
            se.erase(se.begin());
            se.insert({x - y, id});
            if (se.begin()->second != id) {
                if (flag) {
                    if ((flag - se.size()) % 2) {
                        ans = flag + 1;
                    } else {
                        ans = flag;
                    }
                    break;
                }
            } else {
                if (flag == 0) flag = se.size();
            }
        }
        printf("%d\n", ans);
    }
    return 0;
}
正解:用两个双端队列\(q_1,q_2\)维护即可。
先把初始的有序蛇放进\(q_1\)里,此时\(q_1\)已满足单调性,头部小,尾部大,我们后面会让\(q_2\)也满足这样的单调性。
第一阶段:
每次从\(q_1,q_2\)的尾部取出最强的蛇,从\(q_1\)头部取出最弱的蛇,如果吃了以后是最弱的,那就进入第二阶段,否则直接装入\(q_2\)的头部。
为什么可以装进\(q_2\)并且是\(q_2\)里最弱的?其实证明最初的结论时已经解释过了,后面进食的蛇肯定是越来越弱的,而且这个阶段最弱的蛇一定在\(q_1\)中。
第二阶段:
此时最弱的蛇,就没必要丢进队列里了,单独维护一下就好了,因为连续的一段进食后都是最弱的,直到总蛇数等于 22 或者进食后不是最弱为止,而最强的依旧从 \(q_1,q_2\)的尾部找。
这样就不需要用其他带\(log\)的数据结构维护了,时间复杂度\(O(Tn)\),代码如下:
int a[N];
int main() {
    int _;
    scanf("%d", &_);
    int n;
    for (int cas = 1; cas <= _; cas++) {
        if (cas == 1) {
            scanf("%d", &n);
            for (int i = 1; i <= n; i++) {
                scanf("%d", &a[i]);
            }
        } else {
            int k;
            scanf("%d", &k);
            while (k--) {
                int x, y;
                scanf("%d%d", &x, &y);
                a[x] = y;
            }
        }
        deque<pair<int, int> > q1, q2;
        for (int i = 1; i <= n; i++) {
            q1.push_back({a[i], i});
        }
        int ans;
        while (1) {
            if (q1.size() + q2.size() == 2) {
                ans = 1;
                break;
            }
            int x, id, y;
            y = q1.front().first, q1.pop_front();
            if (q2.empty() || !q1.empty() && q1.back() > q2.back()) {
                x = q1.back().first, id = q1.back().second, q1.pop_back();
            } else {
                x = q2.back().first, id = q2.back().second, q2.pop_back();
            }
            pair<int, int> now = make_pair(x - y, id);
            if (q1.empty() || q1.front() > now) {
                ans = q1.size() + q2.size() + 2;  // 不吃
                int cnt = 0;
                while (1) {
                    cnt++;
                    if (q1.size() + q2.size() + 1 == 2) {
                        if (cnt % 2 == 0) ans--;
                        break;
                    }
                    int x, id;
                    if (q2.empty() || !q1.empty() && q1.back() > q2.back()) {
                        x = q1.back().first, id = q1.back().second, q1.pop_back();
                    } else {
                        x = q2.back().first, id = q2.back().second, q2.pop_back();
                    }
                    now = {x - now.first, id};
                    if ((q1.empty() || now < q1.front()) && (q2.empty() || now < q2.front())) {
                        ;
                    } else {
                        if (cnt % 2 == 0) ans--;
                        break;
                    }
                }
                break;
            } else {
                q2.push_front(now);
            }
        }
        printf("%d\n", ans);
    }
    return 0;
}
转自OMG_wc 的博客
洛谷P7078 [CSP-S2020] 贪吃蛇 题解的更多相关文章
- 洛谷P1854 花店橱窗布置 分析+题解代码
		
洛谷P1854 花店橱窗布置 分析+题解代码 蒟蒻的第一道提高+/省选-,纪念一下. 题目描述: 某花店现有F束花,每一束花的品种都不一样,同时至少有同样数量的花瓶,被按顺序摆成一行,花瓶的位置是固定 ...
 - HAOI2006 (洛谷P2341)受欢迎的牛 题解
		
HAOI2006 (洛谷P2341)受欢迎的牛 题解 题目描述 友情链接原题 每头奶牛都梦想成为牛棚里的明星.被所有奶牛喜欢的奶牛就是一头明星奶牛.所有奶 牛都是自恋狂,每头奶牛总是喜欢自己的.奶牛之 ...
 - 洛谷P3412 仓鼠找$Sugar\ II$题解(期望+统计论?)
		
洛谷P3412 仓鼠找\(Sugar\ II\)题解(期望+统计论?) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1327573 原题链接:洛谷P3412 ...
 - 洛谷P3502 [POI2010]CHO-Hamsters感想及题解(图论+字符串+矩阵加速$dp\&Floyd$)
		
洛谷P3502 [POI2010]CHO-Hamsters感想及题解(图论+字符串+矩阵加速\(dp\&Floyd\)) 标签:题解 阅读体验:https://zybuluo.com/Junl ...
 - 洛谷 P7078 - [CSP-S2020] 贪吃蛇(贪心)
		
题面传送门 题意: 有 \(n\) 条蛇,每条蛇有个实力 \(a_i\) 我们称编号为 \(x\) 的蛇比编号为 \(y\) 的蛇强,当且仅当 \(a_x>a_y\) 或 \(a_x=a_y\) ...
 - BZOJ4946 & 洛谷3826 & UOJ318:[NOI2017]蔬菜——题解
		
https://www.lydsy.com/JudgeOnline/problem.php?id=4946 https://www.luogu.org/problemnew/show/P3826 ht ...
 - 洛谷1578:[WC2002]奶牛浴场——题解
		
https://www.luogu.org/problemnew/show/P1578#sub 由于John建造了牛场围栏,激起了奶牛的愤怒,奶牛的产奶量急剧减少.为了讨好奶牛,John决定在牛场中建 ...
 - 洛谷P2460 [SDOI2007]科比的比赛(题解)(贪心+搜索)
		
科比的比赛(题解)(贪心+搜索) 标签:算法--贪心 阅读体验:https://zybuluo.com/Junlier/note/1301158 贪心+搜索 洛谷题目:P2460 [SDOI2007] ...
 - 洛谷 P1146 【硬币翻转】题解
		
很久很久之前做过的一道题 翻n-1枚硬币,就是有一枚不翻,也可以理解为翻一枚 直接上程序,看程序说话 #include<iostream> using namespace std; ; b ...
 - 洛谷P1972 [SDOI2009]HH的项链 题解
		
[SDOI2009]HH的项链 题目背景 无 题目描述 HH 有一串由各种漂亮的贝壳组成的项链.HH 相信不同的贝壳会带来好运,所以每次散步完后,他都会随意取出一段贝壳,思考它们所表达的含义.HH 不 ...
 
随机推荐
- 手动设置IDEA失效的配置文件
 - PyQt4制作GUI
			
时间:2018-11-30 记录:byzqy 标题:PyQt4入门学习笔记(一) 地址:https://www.cnblogs.com/chuxiuhong/p/5865201.html 标题:PyQ ...
 - 三大操作系统对比使用之·Ubuntu16.04
			
时间:2018-11-13 整理:byzqy 本篇是一篇个人对 Ubuntu 16.04(桌面版)使用方法.技巧以及应用推荐的文章,以便查询和分享! 打开终端: Ctrl+Alt+T,即可打开&quo ...
 - MySQL的主从复制步骤详解及常见错误解决方法
			
mysql主从复制(replication同步)现在企业用的比较多,也很成熟.它有以下优点: 1.降低主服务器压力,可在从库上执行查询工作. 2.在从库上进行备份,避免影响主服务器服务. 3.当主库出 ...
 - 性能测试工具JMeter 基础(五)—— 测试元件: 测试计划
			
测试计划的定义: 测试计划是测试脚本的容器,定义了要执行什么.怎么执行对测试做总体的设置,且都是从线程组开始执行 在测试计划中可自定义用户变量(User Defined Variables),可通过A ...
 - 五分钟搞懂MySQL索引下推
			
大家好,我是老三,今天分享一个小知识点--索引下推. 如果你在面试中,听到MySQL5.6"."索引优化" 之类的词语,你就要立马get到,这个问的是"索引下推 ...
 - 创建 Spring容器的三种方式
			
一.src路径下打包完在war包的classes层级下 1.Spring容器创建的三种方式 创建Bean容器之后创建对象: 其中第三种使用的是BeanFactory对象 2.spring通过配置文件用 ...
 - go语言游戏服务端开发(二)——网络通信
			
一.网络层 网络游戏客户端除了全局登录使用http请求外,一般通过socket长连接与服务端保持连接.go语言的net包提供网络socket长连接相关操作. 对于服务端,一般经历 Listen.Acc ...
 - 关于软链接ln -s 的使用
			
1.效果跟windows创建快捷方式是一样的,先找到要被创建的原始文件或目录.然后才能创建. 2.格式:ln -s [源文件或目录] [目标文件或目录] 3.源文件或目录必须是绝对目录. 4 ...
 - Wpf UserControl使用 KeyBinding,失效问题
			
我的问题根源是UserControl未获取相应焦点,在UserControl后台添加如下 public AccountDetailView() { Initia ...