题目传送门

题目大意

见题面。

思路

本来以为zcx、pxj变强了,后来发现是SPJ出问题了。。。考试的时候感觉有点人均啊。。。结果自己还是只想出来一半。

我们假设 \(f(x)=(\lfloor\frac{2x}{2^n}\rfloor+2x)\pmod{2^n}\),那么我们可以看出 \(f(x)\) 实际上就是 \(x\) 把第一位提到最后一位,那么我们就可以想到 \(f(a\otimes b)=f(a)\otimes f(b)\)(虽然我考试的时候就是这里没有想到)。

考虑原问题,我们不难看出,答案就是:

\[\max_{x=0}^{2^n-1}\{\min_{i=0}^{m}f(x\otimes\text{pre}(i))\otimes \text{suf}(i+1)\}
\]
\[=\max_{x=0}^{2^n-1}\{\min_{i=0}^{m}f(x)\otimes f(\text{pre}(i))\otimes \text{suf}(i+1)\}
\]

然后我们把 \(f(\text{pre}(i))\otimes \text{suf}(i+1)\) 放到 trie 树上面跑 dfs 就好了。

时间复杂度 \(\Theta(nm)\) 。

\(\texttt{Code}\)

#include <bits/stdc++.h>
using namespace std; #define Int register int
#define MAXN 100005 template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');} int n,m,a[MAXN],suf[MAXN],pre[MAXN]; int f (int x){return (x * 2 + (x * 2) / (1 << n)) % (1 << n);} int cnt = 1,ch[MAXN * 30][2]; void ins (int x){
int now = 1;
for (Int i = n - 1;~i;-- i){
int k = x >> i & 1;
if (!ch[now][k]) ch[now][k] = ++ cnt;
now = ch[now][k];
}
} int dp[MAXN * 30]; int dfs (int now,int len){
if (len < 0) return 0;
if (dp[now]) return dp[now];
int res = 0;
if (!ch[now][1] && ch[now][0]) res = dfs (ch[now][0],len - 1) + (1 << len);
else if (!ch[now][0] && ch[now][1]) res = dfs (ch[now][1],len - 1) + (1 << len);
else{
res = max (res,dfs (ch[now][0],len - 1));
res = max (res,dfs (ch[now][1],len - 1));
}
return dp[now] = res;
} int query (int now,int len,int s){
if (len < 0) return 0;
int k = s >> len & 1;
if (ch[now][k]) return query (ch[now][k],len - 1,s);
else return query (ch[now][!k],len - 1,s) + (1 << len);
} unordered_map <int,bool> vis; signed main(){
read (n,m);
for (Int i = 1;i <= m;++ i) read (a[i]),pre[i] = pre[i - 1] ^ f (a[i]);
for (Int i = m;i >= 1;-- i) suf[i] = suf[i + 1] ^ a[i];
for (Int i = 0;i <= m;++ i) ins (pre[i] ^ suf[i + 1]);
int ans = dfs (1,n - 1),res = 0;
for (Int i = 0;i <= m;++ i){
int stx = ans ^ pre[i] ^ suf[i + 1];
if (!vis[stx] && query (1,n - 1,stx) == ans) vis[stx] = 1,res ++;
}
write (ans),putchar ('\n'),write (res),putchar ('\n');
return 0;
}

题解 2020.10.24 考试 T2 选数的更多相关文章

  1. 题解 2020.10.24 考试 T3 数列

    题目传送门 题目大意 给出一个数 \(n\),你要构造一个数列,满足里面每个数都是 \(n\) 的因子,且每一个数与前面不互质的个数不超过 \(1\).问有多少种合法方案. 保证 \(n\) 的不同质 ...

  2. 题解 2020.10.24 考试 T4 模板

    题目传送门 题目大意 有一个 \(n\) 个点组成的树,有 \(m\) 次操作,每次将 \(1\to x\) 的路径上每个点都加入一个颜色为 \(c\) 的小球.但是每个点都有大小限制,即小球个数超过 ...

  3. 10.24考试题解qwq

    考点难度都很合适的一套题目,大概在day1到day2之前 T1 猴猴最喜欢在树上玩耍,一天猴猴又跳上了一棵树,这棵树有N个苹果,每个苹果有一个编号,分别为0~N-1,它们之间由N-1个树枝相连,猴猴可 ...

  4. 题解【2.23考试T2】str

    2. str [题目描述] 这是一道传统题,源代码的文件名为 str.cpp/c/pas. 构造 n 个 01 字符串 S1...Sn,使得对于任意 i≠j,Si 不是 Sj 的前缀.在最小化串长和的 ...

  5. 2020.10.24【普及组】模拟赛C组 总结

    T1:暴力 1:先从 6 个中选三个,再把选出的三个全排列,全排列后再判断是否可行 2:把 6 个全都全排列,然后判断 T2:判断误差 1:减法时结果加上 1e-8 2:把小数乘上 1e6 左右 考试 ...

  6. 2020.10.17 JZOJ 提高B组T2 导弹拦截

    2020.10.17 JZOJ 提高B组T2 导弹拦截 题目 Description 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统. 敌国的导弹形成了立体打击,每个导弹可以抽象成一个三维空间中的 ...

  7. luoguP6620 [省选联考 2020 A 卷] 组合数问题(斯特林数)

    luoguP6620 [省选联考 2020 A 卷] 组合数问题(斯特林数) Luogu 题外话: LN切这题的人比切T1的多. 我都想到了组合意义乱搞也想到可能用斯特林数为啥还是没做出来... 我怕 ...

  8. luoguP1036 选数 暴力AC题解

    luoguP1036 选数 暴力AC题解(非正解) 俗话说得好:暴力出奇迹,打表拿省一. 对于一些暴力就能拿分的题,暴力就好啦QWQ 题目描述   输入格式 输出格式 输入输出样例 定义变量 我们令输 ...

  9. NOIP2018赛前停课集训记(10.24~11.08)

    前言 为了不久之后的\(NOIP2018\),我们的停课从今天(\(Oct\ 24th\))起正式开始了. 本来说要下周开始的,没想到竟提早了几天,真是一个惊喜.毕竟明天有语文考试.后天有科学考试,逃 ...

随机推荐

  1. mybatis gengeator一键生成

  2. OKR工作法读后感

    <OKR工作法>把管理思想融入到一则创业故事中,故事细节经过了精心的设计,融入了管理智慧和踩坑填坑经验,每个细节都以小见大,耐人寻味.一千个读者,就有一千个哈姆雷特. 所以这次我不去点评大 ...

  3. IP掩码的作用

    IP地址&IP掩码==网段,即,与上掩码后相同的IP属于同一网段.

  4. uniapp H5 打包并部署到 nginx

    个人也是了百度了挺久的了,花费的时间( 俩个半小时 ) uniapp 的打包首先要先配置,配置好了才能去进行打包,如图所示. 这只是第一步. 注意: 1.运行基础路径最好用 ./ ,如果配置了其他请自 ...

  5. mini-ndn0.5.0 安装教程 (避免踩坑)

    写在前面 首先需要确定一些配置,因为在安装的过程中需要编译一些内容,所以需要提前准备好. 本人之前ubuntu系统可能比较乱,在尝试很多次安装后,仍然失败,所以就直接重装了一下.说一下我自己的一些配置 ...

  6. 【Elasticsearch】.NetCore中Elasticsearch组件NEST的使用

    .NetCore中Elasticsearch组件NEST的使用 1. 安装Docker # 安装Docker curl -fsSL https://get.docker.com | bash -s d ...

  7. LCT 小记

    全程 Link-Cut Tree,是解决动态树问题的有力科技 --题记 简单实现 LCT 的形态直观上是一堆 Splay 的合体,每个 Splay 以时间戳为关键字,各个 Splay 通过虚边相连,可 ...

  8. springcloud3(五) spring cloud gateway动态路由的四类实现方式

    写这篇博客主要是为了汇总下动态路由的多种实现方式,没有好坏之分,任何的方案都是依赖业务场景需求的,现在网上实现方式主要有: 基于Nacos, 基于数据库(PosgreSQL/Redis), 基于Mem ...

  9. python库--pandas--文本文件读取

    .read_table() / read_csv()     filepath_or_buffer 文件路径 sep='\t' 分隔符. 设置为N, 将尝试自动确定 delimiter=N sep的备 ...

  10. python库--tensorflow--可视化

    方法 返回值类型 参数 说明 tf.summary .FileWrite()   创建事件文件     logdir 文件保存路径(C盘), 通过tensorboard --logdir=文件路径(l ...