令$f_{i}$表示以$i$为结尾的最长上升子序列,显然可以快速预处理

令$L=\max_{i=1}^{n}f_{i}$,当$L$为偶数,考虑如下构造——

将所有$f_{i}\le \frac{L}{2}$的$a_{i}$选入第1个序列,其余位置选入第2个序列

此时,来证明两个序列的最长上升子序列都是$\frac{L}{2}$

考虑这个长为$L$的最长上升子序列,其前$\frac{L}{2}$个元素必然都在第1个序列中,后$\frac{L}{2}$个元素必然都在第2个序列中,即两者最长上升子序列长度都大于等于$\frac{L}{2}$

另一方面,第1个序列中以$i$为结尾的最长上升序列小于等于$\frac{L}{2}$,第2个序列中以$i$为起点的最长上升序列小于等于$\frac{L}{2}$(由于$f_{i}>\frac{L}{2}$,且两者之和小于等于$L$,即有此结论),也都小于等于$\frac{L}{2}$

(其中$i$为各自序列中任意元素)

当$L$为奇数,假设$L=2k+1$,那么对于其中一个长为$L$的上升子序列,要存在一个元素$x$,其不在此序列中,且存在一个长为$k+1$的上升子序列包含其

关于这件事情的必要性是显然的,同时其也是充分的,考虑如下构造——

任选一个长为$L$的上升子序列,根据此性质,选择$x$并假设这个$k+1$的上升子序列为$p_{1},p_{2},...,p_{k+1}$

将所有满足$\forall 1\le j\le k+1,f_{i}\ne f_{p_{j}}$或$f_{i}=f_{x}$且$i\ne x$的$a_{i}$选入第1个序列,其余位置选入第2个序列

在第1个序列中,考虑这个长为$L$的上升子序列,设其中第$i$个位置为$x$,即有$f_{x}=i$,恰好包含$[1,L]$中所有值,其中恰有$k$个值不能选($f_{i}=f_{x}$是可以选的),构成一个长为$k+1$的上升子序列

在第2个序列中,$p_{i}$都被选入第2个序列,也构成一个长为$k+1$个上升子序列

另一方面,对于一个长为$k$的上升子序列,每一个位置的$f_{x}$必然各不相同,而注意到两个序列中都至多含有$k+1$个不同的$f$,即不存在长为$k+2$的上升子序列

关于判定,求出以每一个元素为起点和终点的最长上升子序列,即可求出强制包含某个元素的最长上升子序列,判定其是否大于等于$k+1$即可

由此,即解决此问题,时间复杂度为$o(n\log n)$

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 200005
4 #define L (k<<1)
5 #define R (L+1)
6 #define mid (l+r>>1)
7 int t,n,ans,a[N],vis[N],f[N],g[N],mx[N<<2];
8 void build(int k,int l,int r){
9 mx[k]=0;
10 if (l==r)return;
11 build(L,l,mid);
12 build(R,mid+1,r);
13 }
14 void update(int k,int l,int r,int x,int y){
15 if (l==r){
16 mx[k]=y;
17 return;
18 }
19 if (x<=mid)update(L,l,mid,x,y);
20 else update(R,mid+1,r,x,y);
21 mx[k]=max(mx[L],mx[R]);
22 }
23 int query(int k,int l,int r,int x,int y){
24 if ((l>y)||(x>r))return 0;
25 if ((x<=l)&&(r<=y))return mx[k];
26 return max(query(L,l,mid,x,y),query(R,mid+1,r,x,y));
27 }
28 int main(){
29 scanf("%d",&t);
30 while (t--){
31 scanf("%d",&n);
32 for(int i=1;i<=n;i++)scanf("%d",&a[i]);
33 ans=0;
34 build(1,1,n);
35 for(int i=1;i<=n;i++){
36 f[i]=query(1,1,n,1,a[i]-1)+1;
37 update(1,1,n,a[i],f[i]);
38 ans=max(ans,f[i]);
39 }
40 if (ans%2==0)printf("YES\n");
41 else{
42 build(1,1,n);
43 for(int i=n;i;i--){
44 g[i]=query(1,1,n,a[i]+1,n)+1;
45 update(1,1,n,a[i],g[i]);
46 }
47 bool flag=0;
48 for(int i=n,j=ans;i;i--)
49 if (f[i]==j)j--;
50 else{
51 if (f[i]+g[i]-1>=ans/2+1){
52 printf("YES\n");
53 flag=1;
54 break;
55 }
56 }
57 if (!flag)printf("NO\n");
58 }
59 }
60 }

[atAGC052D]Equal LIS的更多相关文章

  1. Codeforces Round #371 (Div. 2)E. Sonya and Problem Wihtout a Legend[DP 离散化 LIS相关]

    E. Sonya and Problem Wihtout a Legend time limit per test 5 seconds memory limit per test 256 megaby ...

  2. 【HDU 4352】 XHXJ's LIS (数位DP+状态压缩+LIS)

    XHXJ's LIS Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  3. 1053. Path of Equal Weight (30)

    Given a non-empty tree with root R, and with weight Wi assigned to each tree node Ti. The weight of ...

  4. XHXJ's LIS(数位DP)

    XHXJ's LIS http://acm.hdu.edu.cn/showproblem.php?pid=4352 Time Limit: 2000/1000 MS (Java/Others)     ...

  5. HDU 4352 - XHXJ's LIS - [数位DP][LIS问题]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4352 Time Limit: 2000/1000 MS (Java/Others) Memory Li ...

  6. hdu 4352 XHXJ's LIS 数位dp+状态压缩

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4352 XHXJ's LIS Time Limit: 2000/1000 MS (Java/Others ...

  7. POJ 1836-Alignment(DP/LIS变形)

    Alignment Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 13465   Accepted: 4336 Descri ...

  8. poj 1836 LIS变形

    题目链接http://poj.org/problem?id=1836 Alignment Time Limit: 1000MS   Memory Limit: 30000K Total Submiss ...

  9. CodeForces - 650D:Zip-line (LIS & DP)

    Vasya has decided to build a zip-line on trees of a nearby forest. He wants the line to be as long a ...

随机推荐

  1. Spring Boot 整合 Apache Ignite

    关于Ignite的介绍,这边推荐三个链接进行学习了解. https://ignite.apache.org/,首选还是官网,不过是英文版,如果阅读比较吃力可以选择下方两个链接. https://www ...

  2. mybatis 操作数据库(05)

    类型转换.动态排序,查询接口与mapper对应关系说明及其注意事项 一.MyBatis 自带写常见类型转换器.例如:java 类中 String 对应 mySQL中的varchar 二.自定义类型转换 ...

  3. Go语言核心36讲(Go语言进阶技术三)--学习笔记

    09 | 字典的操作和约束 至今为止,我们讲过的集合类的高级数据类型都属于针对单一元素的容器. 它们或用连续存储,或用互存指针的方式收纳元素,这里的每个元素都代表了一个从属某一类型的独立值. 我们今天 ...

  4. python os.walk处理树状目录结构的文件

    在项目工作中,时常需要用到处理文件的方法,尤其是在windows环境下的树状目录结构 os.walk恰好能完美的处理这种树状目录结构文件,能高效地帮助我们得到我们需要处理的文件 目录结构: Deskt ...

  5. Spring中属性注入的几种方式以及复杂属性的注入详解

    在spring框架中,属性的注入我们有多种方式,我们可以通过set方法注入,可以通过构造方法注入,也可以通过p名称空间注入,方式多种多样,对于复杂的数据类型比如对象.数组.List.Map.Prope ...

  6. LCP 07.传递消息

    题目 小朋友 A 在和 ta 的小伙伴们玩传信息游戏,游戏规则如下: 有 n 名玩家,所有玩家编号分别为 0 - n-1,其中小朋友 A 的编号为 0 每个玩家都有固定的若干个可传信息的其他玩家(也可 ...

  7. Sequence Model-week3编程题1-Neural Machine Translation with Attention

    1. Neural Machine Translation 下面将构建一个神经机器翻译(NMT)模型,将人类可读日期 ("25th of June, 2009") 转换为机器可读日 ...

  8. 技术博客——微信小程序的架构与原理

    技术博客--微信小程序的架构与原理 在两个月的微信小程序开发过程中,我曾走了不少弯路,也曾被很多现在看来十分可笑的问题所困扰.这些弯路与困扰,基本上都是由于当时对小程序的架构理解不够充分,对小程序的原 ...

  9. Noip模拟8 2021.6.17

    T1 星际旅行 仔细一看,发现像一个欧拉路(简称一笔画). 满足"可以一笔画"的条件是: 1.所有点都有偶数条连边; 2.有偶数个点连奇数条边; 满足以上两个条件的任意一个即可一笔 ...

  10. noip模拟11

    T1 math 就挺水一小破题目,第一眼看好像不可做,看着看着突然发现假设x和y的最大公约数是gcd,那么kx%y一定是gcd的倍数, 然后想到可以把所有数字与k的gcd求出来,打一个完全背包,可是仔 ...