P3224 [HNOI2012]永无乡 题解
P3224 [HNOI2012]永无乡 题解
题意概括
有若干集合,每个集合最初包含一个值,和一个编号1~n。两个操作:合并两个集合,查询包含值x的集合中第k大值最初的集合编号。
思路
维护集合之间关系显然用并查集,但怎么处理询问,如果只是问最大值,那么显然可以用线段树把最大值存在并查集的祖先上,当然线段树也行。但这里问的是第k大。主席树?主席树是用来处理区间第k大的,而这里每棵树显然储存一整个集合(由多个小集合合并来的)的信息,我们并不关心这个集合内的区间问题,主席树便有点大材小用。所以,得出结论:用并查集和值域(权值)线段树合并。
你的线段树本来就能合并,那并查集是干嘛的呢?我们每次合并是取出x集合和y集合对应的A树和B树,并将B树的信息放到A上,就像这样:A B=>A+B B 如果是 A B=>A+B A+B或A B C(=A+B) 空间势必会炸。若不用并查集我们在查询集合y时,可能拿到的rt[y]树y的根就可能是 A B=>A+B B 中的那个B的而不是A+B的。用了并查集先把 f[y]=x 这样 rt[f[y] 就是 A+B 的根了。(不知不觉写了好多)
实现
其实实现很简单,但对于不熟悉值域线段树和线段树合并的人就不容易了。
值域线段树
先放这道题里涉及值域线段树的代码(代码总是比人话好理解):
int newt(int l,int r,int val)//建一棵只有一个值的树
{
int now=++tot;
t[now].v=1;
if(l==r)
return now;
int mid=l+r>>1;
if(mid>=val)
t[now].l=newt(l,mid,val);
else
t[now].r=newt(mid+1,r,val);
pushup(now);
return now;
}
int query(int now,int l,int r,int val)//查询
{
if(t[now].v<val||!now)return 0;
if(l==r)
return l;
int mid=(l+r)>>1;
if(val<=t[t[now].l].v)
return query(t[now].l,l,mid,val);
else
return query(t[now].r,mid+1,r,val-t[t[now].l].v);
}
详细请看这位大佬的blog。
线段树合并
int merge(int x,int y,int l,int r)
{
if(!x||!y)return x+y;
if(l==r){t[x].v=t[x].v+t[y].v;return x;}
int mid=l+r>>1;
t[x].l=merge(t[x].l,t[y].l,l,mid);
t[x].r=merge(t[x].r,t[y].r,mid+1,r);
pushup(x);
return x;
}
请看这位蒟蒻(我)的blog。
AC代码
#include<bits/stdc++.h>
using namespace std;
struct TREE
{
int v,l,r;
}t[5000005];
int n,m,p[100005],f[100005],rt[100005],id[100005],q,x,y,u,v,tot,k;
char op;
void pushup(int now)
{
t[now].v=t[t[now].l].v+t[t[now].r].v;
}
int find(int now)
{
if(f[now]==now)return now;
else return f[now]=find(f[now]);
}
int newt(int l,int r,int val)
{
//cout<<l<<' '<<r<<' '<<val<<endl;
int now=++tot;
t[now].v=1;
if(l==r)
return now;
int mid=l+r>>1;
if(mid>=val)
t[now].l=newt(l,mid,val);
else
t[now].r=newt(mid+1,r,val);
pushup(now);
return now;
}
int merge(int x,int y,int l,int r)
{
//cout<<x<<' '<<y<<' '<<l<<' '<<r<<endl;
if(!x||!y)return x+y;
if(l==r){t[x].v=t[x].v+t[y].v;return x;}
int mid=l+r>>1;
t[x].l=merge(t[x].l,t[y].l,l,mid);
t[x].r=merge(t[x].r,t[y].r,mid+1,r);
pushup(x);
return x;
}
int query(int now,int l,int r,int val)
{
//cout<<now<<' '<<l<<' '<<r<<endl;
if(t[now].v<val||!now)return 0;
if(l==r)
return l;
int mid=(l+r)>>1;
if(val<=t[t[now].l].v)
return query(t[now].l,l,mid,val);
else
return query(t[now].r,mid+1,r,val-t[t[now].l].v);
}
void pp()
{
for(int i=1;i<=tot;i++)cout<<setw(2)<<i<<' ';cout<<endl;
for(int i=1;i<=tot;i++)cout<<setw(2)<<f[i]<<' ';cout<<endl;
for(int i=1;i<=tot;i++)cout<<setw(2)<<rt[i]<<' ';cout<<endl;
cout<<endl;
for(int i=1;i<=tot;i++)cout<<setw(2)<<t[i].v<<' ';cout<<endl;
for(int i=1;i<=tot;i++)cout<<setw(2)<<t[i].l<<' ';cout<<endl;
for(int i=1;i<=tot;i++)cout<<setw(2)<<t[i].r<<' ';cout<<endl;
cout<<endl;
}
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++)
cin>>p[i],rt[i]=newt(1,n,p[i]),f[i]=i,id[p[i]]=i;
id[0]=-1;
//pp();
for(int i=1;i<=m;i++)
{
cin>>u>>v;
if(find(u)==find(v))continue;
rt[find(u)]=merge(rt[find(u)],rt[find(v)],1,n);
f[find(v)]=find(u);
}
cin>>q;
while(q--)
{
//
cin>>op;
if(op=='Q')
{
cin>>x>>y;
cout<<id[query(rt[find(x)],1,n,y)]<<endl;
}
if(op=='B')
{
cin>>u>>v;
if(find(u)!=find(v))
rt[find(u)]=merge(rt[find(u)],rt[find(v)],1,n),f[find(v)]=find(u);
}
} return 0;
}
后记
后来发现这道题还有更优的平衡树解法,但这个做法应该是码量最少的了,这也说明了值域线段树可以实现一些普通平衡树的操作,但不能完全替代。
P3224 [HNOI2012]永无乡 题解的更多相关文章
- 线段树合并+并查集 || BZOJ 2733: [HNOI2012]永无乡 || Luogu P3224 [HNOI2012]永无乡
题面:P3224 [HNOI2012]永无乡 题解: 随便写写 代码: #include<cstdio> #include<cstring> #include<iostr ...
- 洛谷 P3224 [HNOI2012]永无乡 解题报告
P3224 [HNOI2012]永无乡 题目描述 永无乡包含 \(n\) 座岛,编号从 \(1\) 到 \(n\) ,每座岛都有自己的独一无二的重要度,按照重要度可以将这 \(n\) 座岛排名,名次用 ...
- bzoj2733 / P3224 [HNOI2012]永无乡(并查集+线段树合并)
[HNOI2012]永无乡 每个联通块的点集用动态开点线段树维护 并查集维护图 合并时把线段树也合并就好了. #include<iostream> #include<cstdio&g ...
- 洛谷P3224 [HNOI2012]永无乡(线段树合并+并查集)
题目描述 永无乡包含 nnn 座岛,编号从 111 到 nnn ,每座岛都有自己的独一无二的重要度,按照重要度可以将这 nnn 座岛排名,名次用 111 到 nnn 来表示.某些岛之间由巨大的桥连接, ...
- 洛谷 P3224 [HNOI2012]永无乡
题面 永无乡包含 \(n\) 座岛,编号从 \(1\) 到 \(n\) ,每座岛都有自己的独一无二的重要度,按照重要度可以将这 \(n\) 座岛排名,名次用 \(1\) 到 \(n\) 来表示.某些岛 ...
- P3224 [HNOI2012]永无乡(平衡树合并)
题目描述 永无乡包含 nn 座岛,编号从 11 到 nn ,每座岛都有自己的独一无二的重要度,按照重要度可以将这 nn 座岛排名,名次用 11 到 nn 来表示.某些岛之间由巨大的桥连接,通过桥可以从 ...
- [洛谷P3224][HNOI2012]永无乡
题目大意:给你$n$个点,每个点有权值$k$,现有两种操作: 1. $B\;x\;y:$将$x,y$所在联通块合并2. $Q\;x\;k:$查询第$x$个点所在联通块权值第$k$小是哪个数 题解:线段 ...
- P3224 [HNOI2012]永无乡
思路 平衡树+启发式合并 貌似也可以线段树合并 连边就是合并两个Treap,查询就是第k大 使用Treap,好写好调 代码 #include <cstdio> #include <a ...
- 2018.08.11 洛谷P3224 [HNOI2012]永无乡(线段树合并)
传送门 给出n个带点权的点,支持连边和查询连通块第k大. 这个貌似就是一道线段树合并的裸板啊... 代码: #include<bits/stdc++.h> #define N 100005 ...
随机推荐
- 【LeetCode】91. Decode Ways 解题报告(Python)
[LeetCode]91. Decode Ways 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fux ...
- C. Propagating tree
C. Propagating tree time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- light oj 1100 - Again Array Queries(暴力,鸽巢原理)
http://lightoj.com/volume_showproblem.php?problem=1100 刚一看到这题,要询问这么多次,线段树吧,想多了哈哈,根本没法用线段树做. 然后看看数据范围 ...
- 【感悟】观《BBC彩色二战纪录片》有感
2020年7月2日到3日我看了纪录片,以下是我的一些感悟 1.作为进攻者,无论大事还是小事都需要一鼓作气做完,以免留给对手喘息的机会.(指:未消灭) 2.作为防守者,要有顽强抵抗的精神,但要保留撤退的 ...
- Java初学者作业——编写Java程序,输入一个数字,实现该数字阶乘的计算。
返回本章节 返回作业目录 需求说明: 编写Java程序,输入一个数字,实现该数字阶乘的计算.一个数字的阶乘是所有小于及等于该数的正整数的积,自然数n的阶乘写作n! .例如,5的阶乘等于1*2*3*4* ...
- MySQL数据操作与查询笔记 • 【目录】
持续更新中- 我的大学笔记>>> 章节 内容 第1章 MySQL数据操作与查询笔记 • [第1章 MySQL数据库基础] 第2章 MySQL数据操作与查询笔记 • [第2章 表结构管 ...
- Ranger-AdminServer安装
Ranger-AdminServer安装,对应的Ranger版本1.0.0. RangerAdmin安装依赖如下组件: mysql solr IP/机器名 安装软件 运行进程 zdh-245 Rang ...
- 什么是UE模型?
书接上文:不知怎么选,用RFM模型看舔狗质量! 这里要注意一个问题,我这里是因为内部信息敏感,才抽象成舔狗,大家不要以为我真的在说舔狗...... UE模型即Unit Economics,是指单体经济 ...
- centos6.5-搭建mysql5.7.9
1.msyql5.7.9编译及安装 cmake -DCMAKE_INSTALL_PREFIX=/usr/local/mysql5.7.9 -DMYSQL_DATADIR=/data/mysql5. ...
- 初识python 之 cx_oracle
使用cx_oracle操作oracle数据库 oracleClient 包 #!/user/bin env python # author:Simple-Sir # create_time: 2021 ...