2021.8.21考试总结[NOIP模拟45]
T1 打表

由归纳法可以发现其实就是所有情况的总和。
$\frac{\sum_{j=1}^{1<<k}(v_j-v_{ans})}{2^k}$
$code:$

1 #include<bits/stdc++.h>
2 using namespace std;
3 typedef long long LL;
4
5 namespace IO{
6 inline int read(){
7 int x=0,f=1; char ch=getchar();
8 while(ch<'0'||ch>'9'){ if(ch=='-') f=-1; ch=getchar(); }
9 while(ch>='0'&&ch<='9'){ x=(x<<1)+(x<<3)+(ch^48); ch=getchar(); }
10 return x*f;
11 }
12 inline void write(int x,char sp){
13 char ch[20]; int len=0;
14 if(x<0){ putchar('-'); x=~x+1; }
15 do{ ch[len++]=x%10+(1<<5)+(1<<4); x/=10; }while(x);
16 for(int i=len-1;~i;i--) putchar(ch[i]); putchar(sp);
17 }
18 } using namespace IO;
19
20 const int NN=1<<18,p=1e9+7,inv=5e8+4;
21 LL k,ans,res,U,v[NN];
22
23 signed main(){
24 k=read(); ans=read(); U=(1<<k)-1;
25 for(int i=0;i<=U;i++) v[i]=read();
26 for(int i=0;i<=U;i++) (res+=abs(v[i]-v[ans]))%=p;
27 for(int i=1;i<=k;i++) (res*=inv)%=p;
28 write(res,'\n');
29 return 0;
30 }
T1
T2 蛇
哥吾
T3 购物
每个加和的贡献为$[\left \lceil \frac{a}{2} \right \rceil,a]$。
发现对$a$排序后$a_{i-1}<a_i$,$\frac{a_{i-1}+a_i}{2} \leq a_i$。
因此排序后前缀和找断点即可。
$code:$

1 #include<bits/stdc++.h>
2 #define int long long
3 #define rin register signed
4 using namespace std;
5
6 namespace IO{
7 inline int read(){
8 int x=0,f=1; char ch=getchar();
9 while(ch<'0'||ch>'9'){ if(ch=='-') f=-1; ch=getchar(); }
10 while(ch>='0'&&ch<='9'){ x=(x<<1)+(x<<3)+(ch^48); ch=getchar(); }
11 return x*f;
12 }
13 inline void write(int x,char sp){
14 char ch[20]; int len=0;
15 if(x<0){ putchar('-'); x=~x+1; }
16 do{ ch[len++]=x%10+(1<<5)+(1<<4); x/=10; }while(x);
17 for(rin i=len-1;~i;i--) putchar(ch[i]); putchar(sp);
18 }
19 } using namespace IO;
20
21 const int NN=1e5+5;
22 int n,a[NN],pre[NN],ans;
23
24 signed main(){
25 n=read();
26 for(rin i=1;i<=n;i++) ans+=a[i]=read();
27 sort(a+1,a+n+1);
28 for(rin i=1;i<=n;i++){
29 int tmp=a[i]+1>>1;
30 if(tmp>a[i-1]) ans-=tmp-a[i-1]-1;
31 a[i]+=a[i-1];
32 }
33 write(ans,'\n');
34 return 0;
35 }
T3
T4 ants
可以对开线段树,把区间内有的数赋为$0$,其余赋为$1$,问题转化为求最长连续$0$。加上莫队能拿$50$。
考虑把线段树的$log$去掉。其实只要记每个数值左右有几个连续的数即可,但删除不好操作,因此回滚莫队。
$code:$

1 #include<bits/stdc++.h>
2 using namespace std;
3
4 namespace IO{
5 inline int read(){
6 int x=0,f=1; char ch=getchar();
7 while(ch<'0'||ch>'9'){ if(ch=='-') f=-1; ch=getchar(); }
8 while(ch>='0'&&ch<='9'){ x=(x<<1)+(x<<3)+(ch^48); ch=getchar(); }
9 return x*f;
10 }
11 inline void write(int x,char sp){
12 char ch[20]; int len=0;
13 if(x<0){ putchar('-'); x=~x+1; }
14 do{ ch[len++]=x%10+(1<<5)+(1<<4); x/=10; }while(x);
15 for(int i=len-1;~i;i--) putchar(ch[i]); putchar(sp);
16 }
17 } using namespace IO;
18
19 const int NN=1e5+5;
20 int n,m,a[NN],bel[NN],ans[NN],lb[NN],rb[NN],len;
21 struct ask{ int l,r,id; }q[NN];
22 struct node{ int typ,pos,val; }stk[NN];
23 inline bool cmp(ask x,ask y){ return bel[x.l]==bel[y.l]?x.r<y.r:bel[x.l]<bel[y.l]; }
24
25 signed main(){
26 n=read(); m=read(); len=sqrt(n);
27 for(int i=1;i<=n;i++) a[i]=read(), bel[i]=i/len+1;
28 for(int i=1;i<=m;i++)
29 q[i].l=read(), q[i].r=read(), q[i].id=i;
30 sort(q+1,q+m+1,cmp);
31 for(int i=1,j=1;j<=bel[n];j++){
32 int r=j*len,sum=0;
33 for(int k=1;k<=n;k++) lb[k]=rb[k]=0;
34 for(;bel[q[i].l]==j;i++){
35 while(r<q[i].r){
36 r++;
37 lb[a[r]]=lb[a[r]-1]+1;
38 rb[a[r]]=rb[a[r]+1]+1;
39 int tmp=lb[a[r]]+rb[a[r]]-1;
40 sum=max(sum,tmp);
41 lb[a[r]+rb[a[r]]-1]=tmp;
42 rb[a[r]-lb[a[r]]+1]=tmp;
43 }
44 int res=sum,top=0;
45 for(int l=q[i].l;l<=min(q[i].r,len*bel[q[i].l]);l++){
46 lb[a[l]]=lb[a[l]-1]+1;
47 rb[a[l]]=rb[a[l]+1]+1;
48 stk[++top]=(node){0,a[l]+rb[a[l]]-1,lb[a[l]+rb[a[l]]-1]};
49 stk[++top]=(node){1,a[l]-lb[a[l]]+1,rb[a[l]-lb[a[l]]+1]};
50 int tmp=lb[a[l]]+rb[a[l]]-1;
51 res=max(res,tmp);
52 lb[a[l]+rb[a[l]]-1]=tmp;
53 rb[a[l]-lb[a[l]]+1]=tmp;
54 }
55 ans[q[i].id]=res;
56 while(top){
57 if(!stk[top].typ) lb[stk[top].pos]=stk[top].val;
58 else rb[stk[top].pos]=stk[top].val;
59 top--;
60 }
61 for(int l=q[i].l;l<=min(q[i].r,len*bel[q[i].l]);l++)
62 lb[a[l]]=rb[a[l]]=0;
63 }
64 }
65 for(int i=1;i<=m;i++) write(ans[i],'\n');
66 return 0;
67 }
T4
2021.8.21考试总结[NOIP模拟45]的更多相关文章
- 2021.7.21考试总结[NOIP模拟22]
终于碾压小熠了乐死了 T1 d 小贪心一波直接出正解,没啥好说的(bushi 好像可以主席树暴力找,但我怎么可能会呢?好像可以堆优化简单找,但我怎么可能想得到呢? 那怎么办?昨天两道单调指针加桶,我直 ...
- 2021.9.21考试总结[NOIP模拟58]
T1 lesson5! 开始以为是个无向图,直接不懂,跳去T2了. 之后有看了一眼发现可暴力,于是有了\(80pts\). 发现这个图是有拓扑序的,于是可以用拓扑排序找最长路径.先找原图内在最长路径上 ...
- 2021.9.17考试总结[NOIP模拟55]
有的考试表面上自称NOIP模拟,背地里却是绍兴一中NOI模拟 吓得我直接文件打错 T1 Skip 设状态$f_i$为最后一次选$i$在$i$时的最优解.有$f_i=max_{j<i}[f_j+a ...
- 2021.9.13考试总结[NOIP模拟52]
T1 路径 考虑每一位的贡献,第$i$位每$2^i$个数会变一次,那么答案为$\sum_{i=1}^{log_2n} \frac{n}{2^i}$. $code:$ 1 #include<bit ...
- 2021.8.11考试总结[NOIP模拟36]
T1 Dove玩扑克 考场并查集加树状数组加桶期望$65pts$实际$80pts$,考后多开个数组记哪些数出现过,只扫出现过的数就切了.用$set$维护可以把被删没的数去掉,更快. $code:$ 1 ...
- 2021.7.29考试总结[NOIP模拟27]
T1 牛半仙的妹子图 做法挺多的,可以最小生成树或者最短路,复杂度O(cq),c是颜色数. 我考场上想到了原来做过的一道题影子,就用了并查集,把边权排序后一个个插入,记录权值的前缀和,复杂度mlogm ...
- 2021.7.15考试总结[NOIP模拟16]
ZJ模拟D2就是NB.. T1 Star Way To Heaven 谁能想到这竟是个最小生成树呢?(T1挂分100的高人JYF就在我身边 把上边界和下边界看成一个点和星星跑最小生成树,从上边界开始跑 ...
- 2021.9.14考试总结[NOIP模拟53]
T1 ZYB和售货机 容易发现把每个物品都买成$1$是没有影响的. 然后考虑最后一个物品的方案,如果从$f_i$向$i$连边,发现每个点有一个出度多个入度,可以先默认每个物品都能买且最大获利,这样可以 ...
- 2021.9.12考试总结[NOIP模拟51]
T1 茅山道术 仔细观察发现对于每个点只考虑它前面第一个与它颜色相同的点即可. 又仔细观察发现对一段区间染色后以这个区间内点为端点的区间不能染色. 于是对区间右端点而言,区间染色的贡献为遍历到区间左端 ...
随机推荐
- Servlet体系结构
一.使用HttpServlet 其中,HttpServlet在重写的service()方法中对http请求的共7中提交方式进行了判断,所以只要我们只要重写对应的请求方式处理逻辑方法 doGet()和d ...
- 常见shell脚本测试题 for/while语句
1.计算从1到100所有整数的和2.提示用户输入一个小于100的整数,并计算从1到该数之间所有整数的和3.求从1到100所有整数的偶数和.奇数和4.执行脚本输入用户名,若该用户存在,输出提示该用户已存 ...
- [第四篇]——Windows Docker 安装之Spring Cloud直播商城 b2b2c电子商务技术总结
Windows Docker 安装 Docker 并非是一个通用的容器工具,它依赖于已存在并运行的 Linux 内核环境. Docker 实质上是在已经运行的 Linux 下制造了一个隔离的文件环境, ...
- zip命令常用选项
大家都知道,在linux上一切皆文件,在实际生产环境中,如果我们需要部署一些系统的服务,我们会将一些软件包提前下载下来统一放到一个文件夹中, 然后将部署的过程用shell或者python写成一个脚本, ...
- Docker宿主机管理
不需要每次输入sudo 在当前用户的用户目录.bashrc中增加以下内容,此后使用docker命令时不需要每次都增加sudo. echo 'sudo usermod -aG docker $USER' ...
- 使用python实现xls批量转为xlsx
利用win32库来实现 # -*- coding:utf-8 -*- import os import win32com.client as win32 #需要转换的数据目录 inputdir = u ...
- [Navicat15 试用期过期解决办法]
Navicat15 试用期过期解决办法 第一步:关闭Navicat 第二步: 打开注册表编辑器,win + R, 输入regedit 第三步: 在最上方搜索框输入HKEY_CURRENT_USER\S ...
- Java基础系列(22)- For循环详解
For循环 虽然所有循环结构都可以用while和dowhile表示,但是Java提供了另外一种语句for循环,使一些循环结构变动更加简单 for循环语句是支持迭代的一种通用结构,是最有效.最灵活的循环 ...
- 为Python安装Redis库
为Python安装Redis库,登陆https://github.com/andymccurdy/redis-py 后点击Download ZIP下载安装包. 解压并安装: git clone htt ...
- css3中的陌生词汇
Transform transform属性是静态属性,一旦写到style里面,将会直接显示作用,无任何变化过程.transform的主要用途是用来做元素的特殊变形. 关于图形变形的基础条件当中的原点设 ...