原题链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1083

题目分析:通过读题发现我们只能往右边或者下边走,意味着“不走回头路”,就是说矩阵里面每个位置最多只会经过一次。其实很多地方是“没有机会”经过的。比如我现在在第  行的第  列,不管之前走的路径是什么样子,则它左边和上边的位置都是不可能再走到的。也就是说,我先在在矩阵第  行的第  列,并假设以它为原点把矩阵分成四个“象限”,只有第四象限的位置才有可能从这以后经过 (当然还包括横轴的正半轴)!

假设我们从起点走到终点的过程中经过第  行的第  列某个位置,为了从起点到终点得到的和最大,那么从起点到第  行的第  列这个位置经过的数的和也一定要最大。我们定义集合  是从起点到第  行的第  列的全部路径集合,定义集合  是从第  行的第  列到终点的全部路径集合。那么起点到终点的路径实际上是子路径  和子路径 的连接(注意删掉第  行的第  列这个点,否则走了两次了)。 即所有经过第  行的第  列的路径都可以划分到  和 这两个集合里,而且任何  和子路径 都可以拼接出一条经过第  行的第  列的路径。那么我要选择一条经过  的能得到最大值的路径,显然要选择  集合里路径和最大的 ,(其实还要选  集合里和路径和最大的 )。

说了这么多,其实就是想明确一个事:从起点到终点的最优路径上经过了  个点,则这条路径上对应起点到这  个点的子路径也都从起点到该位置的所有路径中和最大的路径。

那么假设我们定义  表示从起点到第  行的第  列的最优路径上的数之和,并假设这个矩阵事个二维数组  (下标从  开始)。我们考虑一下,我们如何才能到 ?前一步要么到 , 要么到  ,因为有且只有这两个位置能到 ,那么怎样才能得到  ? 按我们前面说的,如果从起点达到  的最优路径要经过 或者 则,从起点到达  或者  的路径一定也必须是最优的。那么按照我们对  的定义,我们有从起点达到  的最优路径有两种可能:

  • 要么 
  • 要么 

我们要取最优,那自然取较大的,因此有  。这样原来要枚举指数条路径,现在对于每个位置只有两种情况啦。有了递推关系还不够,有初值才能求解。那我们看一下,显然这是在起点,没的选。那么按照递推式  , 但是我们对 没有定义呀!考虑下实际意义,这表示要么我们从上面到达  ,要么从左面到达 。可是上面没有位置过来啊,这种说明没的选。所以我们可以定义, 同理我们也可以定义

那么总结一下我们的递推式:


分析一下这个算法的时间复杂度? 显然是 ,空间复杂度也一样。


代码如下:

#include <iostream>
#include <algorithm>
using namespace std; const int INFTY = (1 << 29); int main() {
int n, a[505][505], dp[505][505];
cin >> n; for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
cin >> a[i][j]; for (int i = 0; i <= n; i++) {
a[0][i] = INFTY;
a[i][0] = INFTY;
} for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
if (i == 1 && j == 1 ) dp[i][j] = a[1][1];
else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) + a[i][j];
}
} cout << dp[n][n] << endl; return 0;
}

51 Nod 1083 矩阵取数问题(动态规划)的更多相关文章

  1. 51Nod 1083 矩阵取数问题 | 动态规划

    #include "bits/stdc++.h" using namespace std; #define LL long long #define INF 0x3f3f3f3f3 ...

  2. 51Nod 1083 矩阵取数问题(矩阵取数dp,基础题)

    1083 矩阵取数问题 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题 一个N*N矩阵中有不同的正整数,经过这个格子,就能获得相应价值的奖励,从左上走到右下,只能向下 ...

  3. 1083 矩阵取数问题(DP)

    1083 矩阵取数问题 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题  收藏  关注 一个N*N矩阵中有不同的正整数,经过这个格子,就能获得相应价值的奖励,从左上走 ...

  4. 51nod 1083 矩阵取数问题【动态规划】

    一个N*N矩阵中有不同的正整数,经过这个格子,就能获得相应价值的奖励,从左上走到右下,只能向下向右走,求能够获得的最大价值. 例如:3 * 3的方格. 1 3 3 2 1 3 2 2 1 能够获得的最 ...

  5. 51nod 1083 矩阵取数问题

    就很简单很简单的dp 只能从右或者从下走 所以  dp方程直接看下面公式吧  反正也不难 #include<bits/stdc++.h> using namespace std; ; in ...

  6. 51nod 更难的矩阵取数问题(动态规划)

    更难的矩阵取数问题 给定一个m行n列的矩阵,矩阵每个元素是一个正整数,你现在 在左上角(第一行第一列),你需要走到右下角(第m行,第n列),每次只能朝右或者下走到相邻的位置,不能走出矩阵.然后再从右下 ...

  7. 1166 矩阵取数游戏[区间dp+高精度]

    1166 矩阵取数游戏 2007年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解       题目描述 Description [ ...

  8. 矩阵取数游戏 NOIP 2007

    2016-05-31 17:26:45 题目链接: NOIP 2007 矩阵取数游戏(Codevs) 题目大意: 给定一个矩阵,每次在每一行的行首或者行尾取一个数乘上2^次数,求取完最多获得的分数 解 ...

  9. NOIP2007 矩阵取数游戏

    题目描述 帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的n*m的矩阵,矩阵中的每个元素aij均为非负整数.游戏规则如下: 1.每次取数时须从每行各取走一个元素,共n个.m次后取完矩阵所有元素: 2. ...

随机推荐

  1. pipeline 步骤

    目录 一.简介 二.文件相关 删除当前目录 切换到目录 判断文件是否存在 判断是否为类Unix 返回当前目录 将内容写入文件 读取文件内容 二.制品相关 存取临时文件 三.命令相关 script sh ...

  2. Python matplotlib绘图设置图例

    一.语法简介 plt.legend(loc=2,edgecolor='red',facecolor='green',shadow='True',fontsize=10) #edgecolor 图例边框 ...

  3. <转>libevent使用demo

    这篇文章介绍下libevent在socket异步编程中的应用.在一些对性能要求较高的网络应用程序中,为了防止程序阻塞在socket I/O操作上造成程序性能的下降,需要使用异步编程,即程序准备好读写的 ...

  4. Windows 任务计划部署 .Net 控制台程序

    Windows 搜索:任务计划程序 创建任务 添加任务名称 设置触发器:这里设置每10分钟执行一次 保存之后显示 此任务会从每天的 0:10:00 执行第一次后一直循环下去. 在操作选项卡下,选择启动 ...

  5. CF764B Timofey and cubes 题解

    Content 有一个序列 \(a_1,a_2,a_3,...,a_n\),对于 \(i\in[1,n]\),只要 \(i\leqslant n-i+1\),就把闭区间 \([i,n-i+1]\) 内 ...

  6. Python 代码设计模式

    责任链模式 (场景:OA系统,项目审批...) 使多个对象都有机会处理请求,从而避免请求的发送者和接收者之间的耦合关系.将这些对象连成一条链,并沿着这条链传递该请求,直到有一个对象处理它为止. 适用性 ...

  7. DNS解析超时排查/etc/resolv.conf single-request-reopen参数说明

    添加 options rotate timeout:1 attempts:3 single-request-reopen 添加到/etc/resolv.conf 中 #释义: 循环查询 超时时间 重试 ...

  8. windows(Linux)创建”内网穿透“工具(通过自定义域名访问部署于内网的 web 服务,可以用于调试微信支付,支付宝支付,微信公众号等开发项目)

    此方法需要自有服务器和域名,如果没有这些的开发者, 可以参考钉钉提供的内网穿透方式:https://www.cnblogs.com/pxblog/p/13862376.html 一.准备工作 1.域名 ...

  9. JAVAWEB使用FreeMarker利用ftl把含有图片的word模板生成word文档,然后打包成压缩包进行下载

    这是写的另一个导出word方法:https://www.cnblogs.com/pxblog/p/13072711.html 引入jar包,freemarker.jar.apache-ant-zip- ...

  10. Miniconda入门教程

    Miniconda 教程 介绍 Anaconda指的是一个开源的Python发行版本,其包含了conda.Python等180多个科学包及其依赖项.因为包含了大量的科学包,Anaconda 的下载文件 ...