不难发现本题贪心是不好做的,可以考虑 \(dp\)。

首先的一个想法就是令 \(dp_{i, j, k, l}\) 表示当前选到第 \(i\) 个位置,当前第一个序列选了 \(j\) 个数,当前第一个序列最后一个元素为 \(k\),第二个序列最后一个元素为 \(l\) 是否合法。这样的话转移十分显然,但复杂度过高了。进一步我们可以发现 \(k, l\) 中一定有一个是 \(a_i\),于是我们可以令 \(dp_{i, j, k, 0 / 1}\) 表示当前选到第 \(i\) 个位置,当前第一个序列选了 \(j\) 个数,选择 \(a_i\) 为结尾的另一个序列的结尾为 \(k\),\(i\) 是第一个序列还是第二个序列选择是否合法。这样的转移也很显然,不再赘述。

下面这个操作就非常骚了,我们可以发现我们 \(dp\) 的值都是 \(0 / 1\),这样感觉非常的亏,我们能不能将状态中的某一维设计到 \(dp\) 值中去呢?答案是可以的,我们令 \(dp_{i, j, 0 / 1}\) 表示当前选到第 \(i\) 个位置,第一个序列选了 \(j\) 个数,\(a_i\) 是第一个还是第二个序列选时另一个序列结尾元素的最小值。那么我们就有转移:

\(dp_{i, j, 0} = \min\{dp_{i, j, 0}, dp_{i - 1, j - 1, 0}\}(a_i > a_{i - 1})\)

\(dp_{i, j, 0} = \min\{dp_{i, j, 0}, a_{i - 1}\}(a_i > dp_{i - 1, j - 1, 1})\)

\(dp_{i, j, 1} = \min\{dp_{i, j, 1}, dp_{i - 1, j, 1}\}(a_i > a_{i - 1})\)

\(dp_{i, j, 1} = \min\{dp_{i, j, 1}, a_{i - 1}\}(a_i > dp_{i - 1, j, 0})\)

最终只需判断 \(dp_{n, \frac{n}{2}, 0 / 1} \ne \infty\) 即可。

#include<bits/stdc++.h>
using namespace std;
#define N 2000 + 5
#define inf 1000000000
#define rep(i, l, r) for(int i = l; i <= r; ++i)
int T, n, a[N], dp[N][N][2];
int read(){
char c; int x = 0, f = 1;
c = getchar();
while(c > '9' || c < '0'){ if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int main(){
T = read();
while(T--){
n = read();
rep(i, 1, n) a[i] = read();
rep(i, 1, n) rep(j, 0, min(i, n / 2)) dp[i][j][0] = dp[i][j][1] = inf;
dp[1][1][0] = dp[1][0][1] = -1;
rep(i, 2, n) rep(j, 0, min(i, n / 2)){
if(a[i] > a[i - 1] && j >= 1) dp[i][j][0] = dp[i - 1][j - 1][0];
if(j >= 1 && a[i] > dp[i - 1][j - 1][1]) dp[i][j][0] = min(dp[i][j][0], a[i - 1]);
if(a[i] > a[i - 1]) dp[i][j][1] = dp[i - 1][j][1];
if(a[i] > dp[i - 1][j][0]) dp[i][j][1] = min(dp[i][j][1], a[i - 1]);
}
if(dp[n][n / 2][0] != inf || dp[n][n / 2][1] != inf) puts("Yes!");
else puts("No!");
}
return 0;
}

[HNOI2009]双递增序列的更多相关文章

  1. 【BZOJ1489】[HNOI2009]双递增序列(动态规划)

    [BZOJ1489][HNOI2009]双递增序列(动态规划) 题面 BZOJ 洛谷 题解 这\(dp\)奇奇怪怪的,设\(f[i][j]\)表示前\(i\)个数中,第一个数列选了\(j\)个数,第二 ...

  2. [luogu4728 HNOI2009] 双递增序列 (dp)

    传送门 Solution 前几天刚做了类似题,这种将一个序列拆分为两个单调序列的题一般都是设\(dp[i]\)表示i为一个单调序列的末尾时,另一个序列的末尾是多少 然后应用贪心的思想,在这道题中就是让 ...

  3. [HNOI2009]双递增序列(动态规划,序列dp)

    感觉这个题还蛮难想的. 首先状态特别难想.设\(dp[i][j]\)表示前i个数,2序列的长度为j的情况下,2序列的最后一个数的最小值. 其中1序列为上一个数所在的序列,2序列为另外一个序列. 这样设 ...

  4. P4728 [HNOI2009]双递增序列

    题意 这个DP状态有点神. 首先考虑一个最暴力的状态:\(f_{i,j,k,u}\)表示第一个选了\(i\)个,第二个选了\(j\)个,第一个结尾为\(k\),第二个结尾为\(u\)是否可行. 现在考 ...

  5. [HNOI2009]双递增序列(洛谷P4728)+小烈送菜(内部训练题)——奇妙的dp

    博主学习本题的经过嘤嘤嘤: 7.22 : 听学长讲(一知半解)--自己推(推不出来)--网上看题解--以为自己会了(网上题解是错的)--发现错误以后又自己推(没推出来)--给学长发邮件--得到正确解法 ...

  6. luogu4728 双递增序列 (dp)

    设f[i][j]表示以i位置为第一个序列的结尾,第一个序列的长度为j,第二个序列的结尾的最小值 那么对于f[i][j],有转移$f[i+1][j+1]=min\{f[i+1][j+1],f[i][j] ...

  7. BZOJ 1489: [HNOI2009]双递增序( dp )

    dp(i, j)表示选第i个, 且当前序列长度为j, 另一个序列的最后一个元素的最小值...然后根据上一个是哪个序列选的讨论一下就行了...奇怪的dp... --------------------- ...

  8. [BZOJ 1489][HNOI2009]双递增序

    传送门 满满的负罪感,昨晚的刷题历程:写几道难题吧-->算了,还是只切道水题吧-->RNG赢了...... 背包一下就行了 #include <bits/stdc++.h> u ...

  9. ACM: Racing Gems - 最长递增序列

    Racing Gems   You are playing a racing game.  Your character starts at the x axis (y = 0) and procee ...

随机推荐

  1. 破解UltraEdit64 Version 28.20.0.92 技术分享。

    本文为原创作品,转载请注明出处,作者:Chris.xisaer E-mail:69920579@qq.com QQ群3244694 补丁程序下载地址:https://download.csdn.net ...

  2. Codeforces 1113C: Sasha and a Bit of Relax(位运算|异或)

    time limit per test: 1 secondmemory limit per test: 256 megabytesinput: standard inputoutput: standa ...

  3. A pure L1-norm principal component analysis

    @ 目录 问题 细节 的损失函数 算法 投影 坐标系 载荷向量 A pure L1-norm principal component analysis 虽然没有完全弄清楚其中的数学内涵,但是觉得有趣, ...

  4. null和空字符串对于查询where条件语句的影响

    在数据库中我们进行数据处理的过程中,对于null值或者空字符串的情况对于这种数据我们进行计算平均值以及查询过程中如何进行对于这类数据的处理呢? step1:建表:create table a(id i ...

  5. CS5265 demoboard|CS5265测试板电路参考|CS5265 Typec转HDMI 4K60HZ方案

    CS5265是TYPEC转HDMI2.0音视频转换芯片,CS5265符合DP1.4协议,且输出的视频信号是HDMI2.0 即4K60HZ  CS5265集成了DP1.4兼容接收机和HDMI2.0b兼容 ...

  6. Java Web程序设计笔记 • 【第10章 JSTL标签库】

    全部章节   >>>> 本章目录 10.1 JSTL 概述 10.1.1 JSTL 简介 10.1.1 JSTL 使用 10.1.2 实践练习 10.2 核心标签库 10.2. ...

  7. PHP 中的多进程使用,进程通信、进程信号等详解

    多进程环境要求 Linux 系统 php-cli 模式 pcntl 扩展 或 swoole 扩展 pcntl 扩展 <?php $str = "hello world!" . ...

  8. gradle学习(一)

    projects和tasks 任何一个Gradle构建都是由一个或者多个project组成 每个project都有多个tasks构成 每个task都代表了构建执行过程中的一个原子性操作.例如 编译 打 ...

  9. Springboot整合Mybatis,连接多个数据库(Mysql+Oracle)

    maven依赖,需要注意的是mysql使用的版本 1 <dependencies> 2 <dependency> 3 <groupId>com.oracle.dat ...

  10. Android官方文档翻译 十三 3.1Supporting Different Languages

    Supporting Different Languages 支持不同语言 This class teaches you to 这节课教给你 Create Locale Directories and ...