Description

小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑。

他决定,在脱坑之前,最后再来打一盘亚瑟王。既然是最后一战,就一定要打得漂亮。众所周知,亚瑟王是一个看脸的游戏,技能的发动都是看概率的。作为一个非洲人,同时作为一个前 OIer,小 K 自然是希望最大化造成伤害的期望值。但他已经多年没写过代码,连 Spaly都敲不对了,因此,希望你能帮帮小 K,让他感受一下当欧洲人是怎样的体验。 
本题中我们将考虑游戏的一个简化版模型。 
玩家有一套卡牌,共 n张。游戏时,玩家将 n 张卡牌排列成某种顺序,排列后将卡牌按从前往后依次编号为 1 ~  n。本题中,顺序已经确定,即为输入的顺序。
每张卡牌都有一个技能。第 i 张卡牌的技能发动概率为 pi,如果成功发动,则会对敌方造成di点伤害。也只有通过发动技能,卡牌才能对敌方造成伤害。基于现实因素以及小K非洲血统的考虑,pi不会为 0,也不会为 1,即 0 < pi < 1。 
一局游戏一共有 r 轮。在每一轮中,系统将从第一张卡牌开始,按照顺序依次考虑每张卡牌。在一轮中,对于依次考虑的每一张卡牌: 
1如果这张卡牌在这一局游戏中已经发动过技能,则 
1.1 如果这张卡牌不是最后一张,则跳过之(考虑下一张卡牌); 
否则(是最后一张),结束这一轮游戏。 
2否则(这张卡牌在这一局游戏中没有发动过技能),设这张卡牌为第 i 张 
2.1将其以 pi的概率发动技能。 
2.2如果技能发动,则对敌方造成 di点伤害,并结束这一轮。 
2.3如果这张卡牌已经是最后一张(即 i 等于n),则结束这一轮;否则,考虑下一张卡牌。 
请帮助小 K 求出这一套卡牌在一局游戏中能造成的伤害的期望值。 

Input

输入文件的第一行包含一个整数 T,代表测试数据组数。

接下来一共 T 组数据。 
每组数据的第一行包含两个用空格分开的整数 n和r,分别代表卡牌的张数和游戏的轮数。 
接下来 n行,每行包含一个实数和一个整数,由空格隔开,描述一张卡牌。第i 行的两个数为 pi和 di,分别代表第 i 张卡牌技能发动的概率(实数)和技能发动造成的伤害(整数)。保证 pi最多包含 4位小数,且为一个合法的概率。 

Output

对于每组数据,输出一行,包含一个实数,为这套卡牌在这一局游戏中造成的伤害的期望值。对于每一行输出,只有当你的输出和标准答案的相对误差不超过10^-8时——即|a-o|/a<=10-8时(其中a是标准答案,o是输出),你的输出才会被判为正确。

建议输出10 位小数。 

Sample Input

1
3 2
0.5000 2
0.3000 3
0.9000 1

Sample Output

3.2660250000

HINT

一共有 13 种可能的情况:

1.  第一轮中,第 1张卡牌发动技能;第二轮中,第 2张卡牌发动技能; 
概率为 0.15,伤害为5。 
2.  第一轮中,第 1张卡牌发动技能;第二轮中,第 3张卡牌发动技能; 
概率为 0.315,伤害为3。 
3.  第一轮中,第 1张卡牌发动技能;第二轮不发动技能; 
概率为 0.035,伤害为2。 
4.  第一轮中,第 2张卡牌发动技能;第二轮中,第 1张卡牌发动技能; 
概率为 0.075,伤害为5。 
5.  第一轮中,第 2张卡牌发动技能;第二轮中,第 3张卡牌发动技能; 
概率为 0.0675,伤害为4。 
6.  第一轮中,第 2张卡牌发动技能;第二轮不发动技能; 
概率为 0.0075,伤害为3。 
7.  第一轮中,第 3张卡牌发动技能;第二轮中,第 1张卡牌发动技能; 
概率为 0.1575,伤害为3。 
8.  第一轮中,第 3张卡牌发动技能;第二轮中,第 2张卡牌发动技能; 
概率为 0.04725,伤害为4。 
9.  第一轮中,第 3张卡牌发动技能;第二轮不发动技能; 
概率为 0.11025,伤害为1。 
10.  第一轮不发动技能;第二轮中,第 1张卡牌发动技能; 
概率为 0.0175,伤害为2。 
11.  第一轮不发动技能;第二轮中,第 2张卡牌发动技能; 
概率为 0.00525,伤害为3。 
12.  第一轮不发动技能;第二轮中,第 3张卡牌发动技能; 
概率为 0.011025,伤害为1。 
13.  第一轮不发动技能;第二轮亦不发动技能; 
概率为 0.001225,伤害为0。 
造成伤害的期望值为概率与对应伤害乘积之和,为 3.266025。
对于所有测试数据, 1 <= T <= 444, 1 <= n <= 220, 0 <= r <= 132, 0 < pi < 1, 0 <= di <= 1000。  
除非备注中有特殊说明,数据中 pi与di均为随机生成。 
请注意可能存在的实数精度问题,并采取适当措施。

Solution

设$f[i][j]$表示到达当前判断是在第$i$张牌,还有$j$轮的概率。
当第$i-1$张没有打出来的时候,$f[i][j]+=f[i-1][j]*(1-p[i-1])^j$
当第$i-1$张成功打出来的时候,$f[i][j]+=f[i-1][j+1]*(1-(1-p[i-1])^j)$,且统计一下答案。

Code

 #include<iostream>
#include<cstring>
#include<cstdio>
using namespace std; int n,T,r,d[];
double Pow[][],p[],ans,f[][]; int main()
{
scanf("%d",&T);
while (T--)
{
scanf("%d%d",&n,&r);
for (int i=; i<=r; ++i) Pow[][i]=;
for (int i=; i<=n; ++i)
{
scanf("%lf%d",&p[i],&d[i]); Pow[i][]=;
for (int j=; j<=r; ++j)
Pow[i][j]=Pow[i][j-]*(-p[i]);
}
ans=;
memset(f,,sizeof(f));
f[][r]=;
for (int i=; i<=n; ++i)
for (int j=; j<=r; ++j)
{
f[i][j]=f[i-][j]*Pow[i-][j]+f[i-][j+]*(-Pow[i-][j+]);
ans+=f[i][j]*(-Pow[i][j])*d[i];
}
printf("%.10lf\n",ans);
}
}

BZOJ4008:[HNOI2015]亚瑟王(DP,概率期望)的更多相关文章

  1. BZOJ4008 [HNOI2015]亚瑟王 【概率dp】

    题目链接 BZOJ4008 题解 要求所有牌造成伤害的期望,就是求每一张牌发动的概率\(g[i]\) 我们发现一张牌能否发动,还与其前面的牌是否发动有关 那我们设\(f[i][j]\)表示前\(i\) ...

  2. 2018.10.13 bzoj4008: [HNOI2015]亚瑟王(概率dp)

    传送门 马上2点考初赛了,心里有点小紧张. 做道概率dp压压惊吧. 话说这题最开始想错了. 最开始的方法是考虑f[i][j]f[i][j]f[i][j]表示第iii轮出牌为jjj的概率. 然后用第ii ...

  3. [HNOI2015]亚瑟王(概率期望,DP)

    题目大意:很清晰了,不写了. $1\le T\le 444,1\le n\le 220,0\le r\le 132,0<p_i<1,0\le d_i\le 1000$. $p_i$ 和 $ ...

  4. BZOJ 4008: [HNOI2015]亚瑟王 [DP 概率 !!!]

    传送门 题意: $r$轮$n$张卡牌,每一轮依次考虑每张卡牌,$p_i$概率发动造成$d_i$伤害后结束本轮或者继续考虑下一张 每张卡牌发动过之后以后都会跳过 求$r$轮之后的期望伤害 看了一节课出题 ...

  5. bzoj4008: [HNOI2015]亚瑟王 dp

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=4008 思路 神仙啊 \(f[i][j]表示第i个点有j次机会(不管成功与否)\) \(f ...

  6. 概率DP——BZOJ4008 [HNOI2015]亚瑟王

    [HNOI2015]亚瑟王 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑.他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂 ...

  7. BZOJ 4008: [HNOI2015]亚瑟王( dp )

    dp(i, j)表示考虑了前i张牌, 然后还有j轮的概率. 考虑第i+1张牌: 发动的概率 : p = dp(i, j) * (1 - (1-p[i+1])^j) 没发动的概率 : dp(i, j) ...

  8. BZOJ4008: [HNOI2015]亚瑟王(期望dp)

    Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 1952  Solved: 1159[Submit][Status] ...

  9. 洛谷 P3239 / loj 2112 [HNOI2015] 亚瑟王 题解【期望】【DP】

    ???看不懂的期望DP 题目描述 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚 ...

随机推荐

  1. xcopy命令的其他参数

    xcopy /s /e /h "c:\123" "D:\123\" 后面多一个斜杠,让程序知道是目录 以下还给您提供了 xcopy 命令的其他参数: /A 仅复 ...

  2. Odata简介和Demo

    转:http://www.cnblogs.com/shanyou/archive/2013/06/11/3131583.html 在SOA的世界中,最重要的一个概念就是契约(contract).在云计 ...

  3. jQuery事件篇---高级事件

    内容提纲: 1.模拟操作 2.命名空间 3.事件委托 4.on.off 和 one 发文不易,转载请注明出处! 一.模拟操作 在事件触发的时候,有时我们需要一些模拟用户行为的操作.例如:当网页加载完毕 ...

  4. AJAX同步问题

    @using ShippingRen.CommonV2.CloudStorage; @using ShippingRen.Api.ServiceModel.PublicDataEntity.Looku ...

  5. 八、阻塞等待异步结果FutureTask

    一.简介 默认的异步任务有些难以控制,有时候我们希望在当前线程获取异步任务的结果.FutureTask可以帮助我们实现 JDK文档:http://tool.oschina.net/uploads/ap ...

  6. 提交表单时,post方式无法提交(一种情况)

    tomcat6,设置文件上传不限制大小maxPostSize="0" 但是在tomcat7及以后版本,应设置为小于0,如maxPostSize="-1"  否则 ...

  7. 优化SQLServer

    由于SQLServer,数据文件mdf过大,造成系统异常卡 一. 更改隔离级别 ALTER DATABASE [B2EC] SET SINGLE_USER WITH ROLLBACK IMMEDIAT ...

  8. input一些验证

    这篇博文大部分来自于网上,为了方便自己查阅,以及帮助他人. 1.正则验证只能输入正整数:  onkeyup = " if (this.value.length==1) { this.valu ...

  9. 一款基于HTML5的高性能WEBGIS介绍

    远景地理信息系统(RemoteGIS)是一款基于HTML5的GIS平台软件,它使用Javascript开发,旨在解决当前WEBGIS矢量数据在数据量和刷新性能上的瓶颈,并利用WEB程序的跨平台特性,打 ...

  10. 50+ Useful Docker Tools

    As containers take root, dozens of tools have sprung up to support them. Check out your options for ...