LightOJ 1213 Fantasy of a Summation(规律 + 快数幂)
http://lightoj.com/volume_showproblem.php?problem=1213
Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu
Description
If you think codes, eat codes then sometimes you may get stressed. In your dreams you may see huge codes, as I have seen once. Here is the code I saw in my dream.
#include <stdio.h>
int cases, caseno;
int n, K, MOD;
int A[1001];
int main() {
scanf("%d", &cases);
while( cases-- ) {
scanf("%d %d %d", &n, &K, &MOD);
int i, i1, i2, i3, ... , iK;
for( i = 0; i < n; i++ ) scanf("%d", &A[i]);
int res = 0;
for( i1 = 0; i1 < n; i1++ ) {
for( i2 = 0; i2 < n; i2++ ) {
for( i3 = 0; i3 < n; i3++ ) {
...
for( iK = 0; iK < n; iK++ ) {
res = ( res + A[i1] + A[i2] + ... + A[iK] ) % MOD;
}
...
}
}
}
printf("Case %d: %d\n", ++caseno, res);
}
return 0;
}
Actually the code was about: 'You are given three integers n, K, MOD and n integers: A0, A1, A2 ... An-1, you have to write K nested loops and calculate the summation of all Ai where i is the value of any nested loop variable.'
Input
Input starts with an integer T (≤ 100), denoting the number of test cases.
Each case starts with three integers: n (1 ≤ n ≤ 1000), K (1 ≤ K < 231), MOD (1 ≤ MOD ≤ 35000). The next line contains n non-negative integers denoting A0, A1, A2 ... An-1. Each of these integers will be fit into a 32 bit signed integer.
Output
For each case, print the case number and result of the code.
Sample Input
2
3 1 35000
1 2 3
2 3 35000
1 2
Sample Output
Case 1: 6
Case 2: 36
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<stdlib.h>
#include<algorithm> using namespace std; const int N = ;
const int INF = 0x3f3f3f3f;
typedef long long ll; int mod; ll Pow(int a, int b, int c)
{
ll ans = ;
a %= c;
while(b)
{
if(b % == )
ans = (ans * a) % c;
a = (a * a) % c;
b /= ;
}
return ans;
} int main()
{
int t, a[N], p = ;;
int n, k;
ll sum;
scanf("%d", &t);
while(t--)
{
p++;
sum = ;
scanf("%d%d%d", &n, &k, &mod);
for(int i = ; i < n ; i++)
{
scanf("%d", &a[i]);
sum += a[i];
}
ll s;
s = Pow(n, k - , mod);
s *= k;
sum %= mod;
sum *= s;
sum %= mod;
printf("Case %d: %lld\n", p, sum);
}
return ;
}
/*
3
2 4 3
1 30
4 9 5
22 18 2 22
2 2147483647 3333
2147483647 2147483647
*/
LightOJ 1213 Fantasy of a Summation(规律 + 快数幂)的更多相关文章
- 好的计数思想-LightOj 1213 - Fantasy of a Summation
https://www.cnblogs.com/zhengguiping--9876/p/6015019.html LightOj 1213 - Fantasy of a Summation(推公式 ...
- LightOj 1213 - Fantasy of a Summation(推公式 快速幂)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1213 #include <stdio.h> int cases, case ...
- 1213 - Fantasy of a Summation
1213 - Fantasy of a Summation If you think codes, eat codes then sometimes you may get stres ...
- LightOJ 1282 Leading and Trailing (快数幂 + 数学)
http://lightoj.com/volume_showproblem.php?problem=1282 Leading and Trailing Time Limit:2000MS Me ...
- LightOJ1213 Fantasy of a Summation —— 快速幂
题目链接:https://vjudge.net/problem/LightOJ-1213 1213 - Fantasy of a Summation PDF (English) Statisti ...
- Fantasy of a Summation n个数,k层重复遍历相加。求它的和%mod的值;推导公式+快速幂
/** 题目:Fantasy of a Summation 链接:https://vjudge.net/contest/154246#problem/L 题意:n个数,k层重复遍历相加.求它的和%mo ...
- Fantasy of a Summation (LightOJ - 1213)(快速幂+简单思维)
题解:根据题目给的程序,就是计算给的这个序列,进行k次到n的循环,每个数需要加的次数是k*n^(k-1),所以快速幂取模,算计一下就可以了. #include <bits/stdc++.h> ...
- Fantasy of a Summation LightOJ - 1213 (快速幂)
题意: 首先 只看第一层循环的A[0],是不是用了nk-1次 A[1]也是用了nk-1次······ 所以 第一层的sum(A[i]的和) 一共用了nk-1 所以第一层为sum * nk-1 因为又 ...
- LightOj 1245 --- Harmonic Number (II)找规律
题目链接:http://lightoj.com/volume_showproblem.php?problem=1245 题意就是求 n/i (1<=i<=n) 的取整的和这就是到找规律的题 ...
随机推荐
- django-auth组件的权限管理
一:自定义权限验证 1.在model中的Meta类自定义权限码 class WorkUser(models.Model): username = models.CharField(u'用户名', ma ...
- nginx正向代理访问百度地图API
正向代理的概念 正向代理,也就是传说中的代理,他的工作原理就像一个跳板,简单的说,我是一个用户,我访问不了某网站,但是我能访问一个代理服务器这个代理服务器呢,他能访问那个我不能访问的网站于是我先连上代 ...
- Django框架之模板语法【转载】
Django框架之模板语法 一.什么是模板? 只要是在html里面有模板语法就不是html文件了,这样的文件就叫做模板. 二.模板语法分类 一.模板语法之变量:语法为 {{ }}: 在 Django ...
- leetcode28
public class Solution { public int StrStr(string haystack, string needle) { return haystack.IndexOf( ...
- 「小程序JAVA实战」小程序视频处理工具ffmpeg(47)
转自:https://idig8.com/2018/09/16/xiaochengxujavashizhanxiaochengxushipinchuligongjuffmpeg46/ 前面已经把视频成 ...
- 关于SQLServer2000中触发器的使用——多行数据提交
关于触发器的使用,有很多争议.触发器的好处不言而喻是增强了数据的校验能力,能够有效地实现复杂的业务逻辑.在一定程度上走的比约束和check走的更远.关于触发器的坏处,最典型的就是触发器的使用会导致系统 ...
- 使用.sig签名验证文件
Linux下载文件的时候,由于网络等原因,下载的文件可能不完整,对于别有心机的人可以更改文件,这就需要我们对文件的完整性进行验证.这里以securityonion-14.04.5.2.iso为例进行验 ...
- sqlserver job 执行时间
select instance_id,jh.run_date,jh.job_id,jh.step_name, case jh.run_status then 'failed' then 'Succee ...
- 【总结整理】关于挪车和虚拟号的思考-转载v2ex
https://www.baidu.com/link?url=A7wiF1JpOkT6Juo0nNHKcum0OiQsnRj-EZkQfjc3xB-noUeLy3HEY-4plbFmPmuJ& ...
- QEMU 代码分析:BIOS 的加载过程
http://www.ibm.com/developerworks/cn/linux/1410_qiaoly_qemubios/ QEMU 中使用 BIOS 简介 BIOS 提供主板或者显卡的固件信息 ...