LightOJ 1213 Fantasy of a Summation(规律 + 快数幂)
http://lightoj.com/volume_showproblem.php?problem=1213
Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu
Description
If you think codes, eat codes then sometimes you may get stressed. In your dreams you may see huge codes, as I have seen once. Here is the code I saw in my dream.
#include <stdio.h>
int cases, caseno;
int n, K, MOD;
int A[1001];
int main() {
scanf("%d", &cases);
while( cases-- ) {
scanf("%d %d %d", &n, &K, &MOD);
int i, i1, i2, i3, ... , iK;
for( i = 0; i < n; i++ ) scanf("%d", &A[i]);
int res = 0;
for( i1 = 0; i1 < n; i1++ ) {
for( i2 = 0; i2 < n; i2++ ) {
for( i3 = 0; i3 < n; i3++ ) {
...
for( iK = 0; iK < n; iK++ ) {
res = ( res + A[i1] + A[i2] + ... + A[iK] ) % MOD;
}
...
}
}
}
printf("Case %d: %d\n", ++caseno, res);
}
return 0;
}
Actually the code was about: 'You are given three integers n, K, MOD and n integers: A0, A1, A2 ... An-1, you have to write K nested loops and calculate the summation of all Ai where i is the value of any nested loop variable.'
Input
Input starts with an integer T (≤ 100), denoting the number of test cases.
Each case starts with three integers: n (1 ≤ n ≤ 1000), K (1 ≤ K < 231), MOD (1 ≤ MOD ≤ 35000). The next line contains n non-negative integers denoting A0, A1, A2 ... An-1. Each of these integers will be fit into a 32 bit signed integer.
Output
For each case, print the case number and result of the code.
Sample Input
2
3 1 35000
1 2 3
2 3 35000
1 2
Sample Output
Case 1: 6
Case 2: 36
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<stdlib.h>
#include<algorithm> using namespace std; const int N = ;
const int INF = 0x3f3f3f3f;
typedef long long ll; int mod; ll Pow(int a, int b, int c)
{
ll ans = ;
a %= c;
while(b)
{
if(b % == )
ans = (ans * a) % c;
a = (a * a) % c;
b /= ;
}
return ans;
} int main()
{
int t, a[N], p = ;;
int n, k;
ll sum;
scanf("%d", &t);
while(t--)
{
p++;
sum = ;
scanf("%d%d%d", &n, &k, &mod);
for(int i = ; i < n ; i++)
{
scanf("%d", &a[i]);
sum += a[i];
}
ll s;
s = Pow(n, k - , mod);
s *= k;
sum %= mod;
sum *= s;
sum %= mod;
printf("Case %d: %lld\n", p, sum);
}
return ;
}
/*
3
2 4 3
1 30
4 9 5
22 18 2 22
2 2147483647 3333
2147483647 2147483647
*/
LightOJ 1213 Fantasy of a Summation(规律 + 快数幂)的更多相关文章
- 好的计数思想-LightOj 1213 - Fantasy of a Summation
https://www.cnblogs.com/zhengguiping--9876/p/6015019.html LightOj 1213 - Fantasy of a Summation(推公式 ...
- LightOj 1213 - Fantasy of a Summation(推公式 快速幂)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1213 #include <stdio.h> int cases, case ...
- 1213 - Fantasy of a Summation
1213 - Fantasy of a Summation If you think codes, eat codes then sometimes you may get stres ...
- LightOJ 1282 Leading and Trailing (快数幂 + 数学)
http://lightoj.com/volume_showproblem.php?problem=1282 Leading and Trailing Time Limit:2000MS Me ...
- LightOJ1213 Fantasy of a Summation —— 快速幂
题目链接:https://vjudge.net/problem/LightOJ-1213 1213 - Fantasy of a Summation PDF (English) Statisti ...
- Fantasy of a Summation n个数,k层重复遍历相加。求它的和%mod的值;推导公式+快速幂
/** 题目:Fantasy of a Summation 链接:https://vjudge.net/contest/154246#problem/L 题意:n个数,k层重复遍历相加.求它的和%mo ...
- Fantasy of a Summation (LightOJ - 1213)(快速幂+简单思维)
题解:根据题目给的程序,就是计算给的这个序列,进行k次到n的循环,每个数需要加的次数是k*n^(k-1),所以快速幂取模,算计一下就可以了. #include <bits/stdc++.h> ...
- Fantasy of a Summation LightOJ - 1213 (快速幂)
题意: 首先 只看第一层循环的A[0],是不是用了nk-1次 A[1]也是用了nk-1次······ 所以 第一层的sum(A[i]的和) 一共用了nk-1 所以第一层为sum * nk-1 因为又 ...
- LightOj 1245 --- Harmonic Number (II)找规律
题目链接:http://lightoj.com/volume_showproblem.php?problem=1245 题意就是求 n/i (1<=i<=n) 的取整的和这就是到找规律的题 ...
随机推荐
- 第七章 : Git 介绍 (下)[Learn Android Studio 汉化教程]
Learn Android Studio 汉化教程 Let’s reset even further to remove all traces of your work on the deprecat ...
- 温故而知新-strtok函数
温故而知新-strtok函数 记得之前没见过这个函数,是把字符串分割成更小的字符串 来个例子就是比较鲜明了 $string = "Hello world. Beautiful day tod ...
- signal模块简介
signal模块简介 最近在看Linux signal 相关内容,signal可以被用来进程间通信和异步处理.Python标准库提供了signal包可以用来处理信号相关.这里讨论的是Unix系统中Py ...
- asp.net利用QQ邮箱发送邮件,关键在于开启pop并设置授权码为发送密码
public static bool SendEmail(string mailTo, string mailSubject, string mailContent) { ...
- 4-30 HTML 细节摘录
<b> 定义粗体文本. <big> 定义大号字. <em> 定义着重文字. <i> 定义斜体字. <small> 定义小号字. <s ...
- 【转】dijkstra算法
来自:https://blog.csdn.net/tw_345/article/details/50109375#comments 2015年11月30日 10:55:08 阅读数:1241 说到di ...
- Proxmox VE 添加软RAID
apt-get update; apt-get install mdadm 安装软件 mdadm -C <设备名字> 创建模式 -l raid等级,0,1,5之类的 -n 使用的磁 ...
- Display file information in the document window
[Display file information in the document window] The status bar is located at the bottom of every d ...
- VUE递归树形目录(vue递归组件)的使用
1.html <!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" ...
- sqlserver top 赋值
DECLARE @password2 VARCHAR(30) select top 1 @password2= password from teacher 不要写成 DECLARE @password ...