BZOJ 1965 洗牌(扩展欧几里得)
容易发现,对于牌堆里第x张牌,在一次洗牌后会变成2*x%(n+1)的位置。
于是问题就变成了求x*2^m%(n+1)=L,x在[1,n]范围内的解。
显然可以用扩展欧几里得求出。
# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <bitset>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
const int N=;
//Code begin... LL mult_mod(LL a, LL b, LL c){
a%=c; b%=c;
LL ret=, tmp=a;
while (b){
if (b&) {
ret+=tmp;
if (ret>c) ret-=c;
}
tmp<<=;
if (tmp>c) tmp-=c;
b>>=;
}
return ret;
}
LL pow_mod(LL a, LL n, LL mod){
LL ret=, temp=a%mod;
while (n) {
if (n&) ret=mult_mod(ret,temp,mod);
temp=mult_mod(temp,temp,mod);
n>>=;
}
return ret;
}
LL extend_gcd(LL a, LL b, LL &x, LL &y){
if (a==&&b==) return -;
if (b==) {x=; y=; return a;}
LL d=extend_gcd(b,a%b,y,x);
y-=a/b*x;
return d;
}
int main ()
{
LL n, m, l, a, b, d, x, y, mod;
scanf("%lld%lld%lld",&n,&m,&l);
a=pow_mod(,m,n+); b=n+;
d=extend_gcd(a,b,x,y); x=x*l/d; mod=b/d;
x=(x%mod+mod)%mod;
printf("%lld\n",x);
return ;
}
BZOJ 1965 洗牌(扩展欧几里得)的更多相关文章
- [BZOJ1965][AHOI2005] 洗牌 - 扩展欧几里得
题目描述 为了表彰小联为Samuel星球的探险所做出的贡献,小联被邀请参加Samuel星球近距离载人探险活动. 由于Samuel星球相当遥远,科学家们要在飞船中度过相当长的一段时间,小联提议用扑克牌打 ...
- BZOJ.2242.[SDOI2011]计算器(扩展欧几里得 BSGS)
同余方程都不会写了..还一直爆int /* 2.关于同余方程ax ≡b(mod p),可以用Exgcd做,但注意到p为质数,y一定有逆元 首先a%p=0时 仅当b=0时有解:然后有x ≡b*a^-1( ...
- 洛谷——P2054 [AHOI2005]洗牌(扩展欧几里得,逆元)
P2054 [AHOI2005]洗牌 扩展欧拉定理求逆元 $1 2 3 4 5 6$$4 1 5 2 6 3$$2 4 6 1 3 5$$1 2 3 4 5 6$ 手推一下样例,你就会发现是有规律的: ...
- bzoj 2242: [SDOI2011]计算器【扩展欧几里得+快速幂+BSGS】
第一问快速幂板子 第二问把式子转化为\( xy\equiv Z(mod P)\rightarrow xy+bP=z \),然后扩展欧几里得 第三问BSGS板子 #include<iostream ...
- Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) C.Ray Tracing (模拟或扩展欧几里得)
http://codeforces.com/contest/724/problem/C 题目大意: 在一个n*m的盒子里,从(0,0)射出一条每秒位移为(1,1)的射线,遵从反射定律,给出k个点,求射 ...
- UVA 12169 Disgruntled Judge 枚举+扩展欧几里得
题目大意:有3个整数 x[1], a, b 满足递推式x[i]=(a*x[i-1]+b)mod 10001.由这个递推式计算出了长度为2T的数列,现在要求输入x[1],x[3],......x[2T- ...
- UVA 10090 Marbles 扩展欧几里得
来源:http://www.cnblogs.com/zxhl/p/5106678.html 大致题意:给你n个球,给你两种盒子.第一种盒子每个盒子c1美元,可以恰好装n1个球:第二种盒子每个盒子c2元 ...
- POJ 1061 青蛙的约会 扩展欧几里得
扩展欧几里得模板套一下就A了,不过要注意刚好整除的时候,代码中有注释 #include <iostream> #include <cstdio> #include <cs ...
- 【64测试20161112】【Catalan数】【数论】【扩展欧几里得】【逆】
Problem: n个人(偶数)排队,排两行,每一行的身高依次递增,且第二行的人的身高大于对应的第一行的人,问有多少种方案.mod 1e9+9 Solution: 这道题由1,2,5,14 应该想到C ...
随机推荐
- 20155315 2016-2017-2 《Java程序设计》第三周学习总结
教材学习内容总结 1.构造方法决定类生成对象的方式 用this将已存在的参数的值指定给此参数. 用new建立新的实例. class Clothes { String color; char size; ...
- vim 查找
一.用/和?的区别:/后跟查找的字符串.vim会显示文本中第一个出现的字符串.?后跟查找的字符串.vim会显示文本中最后一个出现的字符串.二.注意事项:不管用/还是?查找到第一个字符串后,按回车,vi ...
- java 万能转换器 输入SQL 直接得到ArrayList
//java万能List转换器 public static <T> ArrayList<T> ToList(Class<T> clazz,String sql) t ...
- 【LG4309】【BZOJ3173】[TJOI2013]最长上升子序列
[LG4309][BZOJ3173][TJOI2013]最长上升子序列 题面 洛谷 BZOJ 题解 插入操作显然用平衡树就行了 然后因为后面的插入对前面的操作无影响 就直接在插入完的序列上用树状数组求 ...
- windows下安装,配置redis以及可视化客户端redisClient的安装及基本使用
一. Window 下安装 下载地址:https://github.com/MSOpenTech/redis/releases. Redis 支持 32 位和 64 位.这个需要根据你系统平台的实际情 ...
- Yii 2.0 中事件的使用
关于PHP的事件处理,参照 http://www.cnblogs.com/mafeifan/p/4322238.html http://www.cnblogs.com/mafeifan/p/43222 ...
- Flask开发环境搭建
基础准备 Python 3.6.5 Conda Visual Studio Code 虚拟环境 创建虚拟环境 conda create -n flask 激活虚拟环境 activate flask 关 ...
- Excel小技巧整理(持续更新)
合并某列中相同单元格 参考https://jingyan.baidu.com/article/9158e00006db70a25512286f.html 使用方法 先给需要合并的列排序,这样相同数据会 ...
- MySQL☞视图
emmm,我本来最先也没注意到视图,然后再某个群里突然说起了视图,吓得本菜鸟赶紧连牛的不敢吹了,只好去科普一下,才好继续去吹牛. 什么是视图: 视图是一张虚拟的表,从视图中查看一张或多张表中的数据. ...
- Django——多网页网站及网页互联
在helloapp文件夹下添加名为templates的文件夹(此文件夹名称是固定的),并在其下添加html文件,文件内容根据自己网页想呈现的内容而定 在views文件内添加新的函数 在urls文件内添 ...