容易发现,对于牌堆里第x张牌,在一次洗牌后会变成2*x%(n+1)的位置。

于是问题就变成了求x*2^m%(n+1)=L,x在[1,n]范围内的解。

显然可以用扩展欧几里得求出。

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <bitset>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
const int N=;
//Code begin... LL mult_mod(LL a, LL b, LL c){
a%=c; b%=c;
LL ret=, tmp=a;
while (b){
if (b&) {
ret+=tmp;
if (ret>c) ret-=c;
}
tmp<<=;
if (tmp>c) tmp-=c;
b>>=;
}
return ret;
}
LL pow_mod(LL a, LL n, LL mod){
LL ret=, temp=a%mod;
while (n) {
if (n&) ret=mult_mod(ret,temp,mod);
temp=mult_mod(temp,temp,mod);
n>>=;
}
return ret;
}
LL extend_gcd(LL a, LL b, LL &x, LL &y){
if (a==&&b==) return -;
if (b==) {x=; y=; return a;}
LL d=extend_gcd(b,a%b,y,x);
y-=a/b*x;
return d;
}
int main ()
{
LL n, m, l, a, b, d, x, y, mod;
scanf("%lld%lld%lld",&n,&m,&l);
a=pow_mod(,m,n+); b=n+;
d=extend_gcd(a,b,x,y); x=x*l/d; mod=b/d;
x=(x%mod+mod)%mod;
printf("%lld\n",x);
return ;
}

BZOJ 1965 洗牌(扩展欧几里得)的更多相关文章

  1. [BZOJ1965][AHOI2005] 洗牌 - 扩展欧几里得

    题目描述 为了表彰小联为Samuel星球的探险所做出的贡献,小联被邀请参加Samuel星球近距离载人探险活动. 由于Samuel星球相当遥远,科学家们要在飞船中度过相当长的一段时间,小联提议用扑克牌打 ...

  2. BZOJ.2242.[SDOI2011]计算器(扩展欧几里得 BSGS)

    同余方程都不会写了..还一直爆int /* 2.关于同余方程ax ≡b(mod p),可以用Exgcd做,但注意到p为质数,y一定有逆元 首先a%p=0时 仅当b=0时有解:然后有x ≡b*a^-1( ...

  3. 洛谷——P2054 [AHOI2005]洗牌(扩展欧几里得,逆元)

    P2054 [AHOI2005]洗牌 扩展欧拉定理求逆元 $1 2 3 4 5 6$$4 1 5 2 6 3$$2 4 6 1 3 5$$1 2 3 4 5 6$ 手推一下样例,你就会发现是有规律的: ...

  4. bzoj 2242: [SDOI2011]计算器【扩展欧几里得+快速幂+BSGS】

    第一问快速幂板子 第二问把式子转化为\( xy\equiv Z(mod P)\rightarrow xy+bP=z \),然后扩展欧几里得 第三问BSGS板子 #include<iostream ...

  5. Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) C.Ray Tracing (模拟或扩展欧几里得)

    http://codeforces.com/contest/724/problem/C 题目大意: 在一个n*m的盒子里,从(0,0)射出一条每秒位移为(1,1)的射线,遵从反射定律,给出k个点,求射 ...

  6. UVA 12169 Disgruntled Judge 枚举+扩展欧几里得

    题目大意:有3个整数 x[1], a, b 满足递推式x[i]=(a*x[i-1]+b)mod 10001.由这个递推式计算出了长度为2T的数列,现在要求输入x[1],x[3],......x[2T- ...

  7. UVA 10090 Marbles 扩展欧几里得

    来源:http://www.cnblogs.com/zxhl/p/5106678.html 大致题意:给你n个球,给你两种盒子.第一种盒子每个盒子c1美元,可以恰好装n1个球:第二种盒子每个盒子c2元 ...

  8. POJ 1061 青蛙的约会 扩展欧几里得

    扩展欧几里得模板套一下就A了,不过要注意刚好整除的时候,代码中有注释 #include <iostream> #include <cstdio> #include <cs ...

  9. 【64测试20161112】【Catalan数】【数论】【扩展欧几里得】【逆】

    Problem: n个人(偶数)排队,排两行,每一行的身高依次递增,且第二行的人的身高大于对应的第一行的人,问有多少种方案.mod 1e9+9 Solution: 这道题由1,2,5,14 应该想到C ...

随机推荐

  1. 20155317 2016-2017-2《Java程序设计》课程总结

    20155317 2016-2017-2<Java程序设计>课程总结 每周作业链接汇总 新玮的首发博客:对师生关系的期望. C语言与java 20155317 王新玮第二次:语言掌握调查 ...

  2. 树链剖分学习&BZOJ1036

    题目传送门 树链剖分,计算机术语,指一种对树进行划分的算法,它先通过轻重边剖分将树分为多条链,保证每个点属于且只属于一条链,然后再通过数据结构(树状数组.SBT.SPLAY.线段树等)来维护每一条链. ...

  3. GlusterFS学习之路(一)GlusterFS初识

    一.GlusterFS简介 GlusterFS是Scale-Out存储解决方案Gluster的核心,它是一个开源的分布式文件系统,具有强大的横向扩展能力,通过扩展能够支持数PB存储容量和处理数千客户端 ...

  4. 你不需要jQuery You Don't Need jQuery

    转载:https://github.com/oneuijs/You-Dont-Need-jQuery/blob/master/README.zh-CN.md You Don't Need jQuery ...

  5. Windows隐藏账户

    win7系统用户由于共享文件,会开启Guest来宾帐户,开启Guest来宾帐户后发现登录界面会显示guest帐户,但是只有在有密码的情况下才会显示,很多用户不喜欢显示guest帐户,那么Win7登录界 ...

  6. MQ配置安装

    一,MQ安装 ./mqlicense.sh -accept rpm -ivh MQSeries*.rpm --  rpm -qa|grep MQSeries 二,MQ配置 环境变量配置(MQM)实际安 ...

  7. 第六章P2P技术及应用

    第六章P2P技术及应用 P2P技术在我们日常生活中非常实用,例如我们常用的QQ.PPLive.BitTorrent就是基于P2P技术研发.下面将本章中的重点内容进行归纳. 文章中的Why表示产生的背景 ...

  8. Codeforces Round #504 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final) E. Down or Right

    从(1,1,n,n)每次只变一个坐标,进行询问. 如果问到对角线有距离限制, 再从(1,1,n/2,n/2)询问到(n/2,n/2,n,n) 记住前半部分贪心忘上走,后本部分贪心往右走 因为最后的路线 ...

  9. 【python 3.6】python获取当前时间及过去或将来的指定时间

    最近有个查询api,入参需要一个startTime,一个endTime,刚好用到datetime. 留此记录. #python 3.6 #!/usr/bin/env python # -*- codi ...

  10. 杂谈微服务架构下SSO&OpenAPI访问的方案。

    本篇杂谈下微服务架构下WEB应用的浏览器与OpenAPI访问架构与方案.读者可对比传统架构下应用的此话话题的区别.或者有其它方案的欢迎交流