图分为无向图和有向图

图的存储结构有邻接矩阵、邻接表、十字链表、邻接多重表这四种,最常用的是前两种

本篇主要是利用邻接矩阵实现无向图的创建和遍历(深度优先、广度优先),深度优先其实就是二叉树里的前序遍历

  

利用邻接矩阵(边数组)创建图

let scanf = require('scanf');
//定义邻接矩阵
let Arr2 = [
[0, 1, 0, 0, 0, 1, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 1, 0, 1],
[0, 1, 0, 1, 0, 0, 0, 0, 1],
[0, 0, 1, 0, 1, 0, 1, 1, 1],
[0, 0, 0, 1, 0, 1, 0, 1, 0],
[1, 0, 0, 0, 0, 0, 1, 0, 0],
[0, 1, 0, 1, 0, 1, 0, 1, 0],
[0, 0, 0, 1, 1, 0, 1, 0, 0],
[0, 1, 1, 1, 0, 0, 0, 0, 0],
] let numVertexes = 9, //定义顶点数
numEdges = 14; //定义边数 // 定义图结构
function MGraph() {
this.vexs = []; //顶点表
this.arc = []; // 邻接矩阵,可看作边表
this.numVertexes = null; //图中当前的顶点数
this.numEdges = null; //图中当前的边数
}
let G = new MGraph(); //创建图使用 //创建图
function createMGraph() {
G.numVertexes = numVertexes; //设置顶点数
G.numEdges = numEdges; //设置边数 //录入顶点信息
for (let i = 0; i < G.numVertexes; i++) {
G.vexs[i] = scanf('%s'); //String.fromCharCode(i + 65); ascii码转字符
}
console.log(G.vexs) //打印顶点 //邻接矩阵初始化
for (let i = 0; i < G.numVertexes; i++) {
G.arc[i] = [];
for (j = 0; j < G.numVertexes; j++) {
G.arc[i][j] = Arr2[i][j]; //INFINITY;
}
} /**以下是手动录入的方式 */
// for (let k = 0; k < G.numEdges; k++) {
// console.log('输入边(vi,vj)上的下标i,下标j和权w:');
// let rlt = scanf('%d,%d,%d');
// let i = rlt[0], j = rlt[1], w = rlt[2];
// G.arc[i][j] = w;
// G.arc[j][i] = G.arc[i][j]; //无向图,矩阵对称
// } console.log(G.arc); //打印邻接矩阵
}

深度优先遍历

let visited = []; //访问标志数组,遍历时使用

//邻接矩阵的深度优先递归算法
function DFS(i) {
visited[i] = true;
console.log('打印顶点:', G.vexs[i]) //打印顶点 ,也可以其他操作
for (let j = 0; j < G.numVertexes; j++) {
if (G.arc[i][j] == 1 && !visited[j]) {
console.log(G.vexs[i], '->', G.vexs[j])
DFS(j) //对未访问的顶点进行递归
}
}
}
//邻接矩阵的深度遍历操作
function DFSTraverse() {
for (let i = 0; i < G.numVertexes; i++) {
visited[i] = false;
}
for (let i = 0; i < G.numVertexes; i++) {
if (!visited[i])
DFS(i)
}
}

广度优先遍历

//邻接矩阵的广度遍历算法
function BFSTraverse() {
let queue = []; //初始化队列
for (let i = 0; i < G.numVertexes; i++) {
visited[i] = false;
}
for (let i = 0; i < G.numVertexes; i++) { //对每一个顶点做循环
if (!visited[i]) { //如果没有访问过就处理
visited[i] = true;
console.log('打印顶点:', G.vexs[i]) //也可以是其他操作
queue.push(i); //将此顶点入队列
while (queue.length != 0) { //当前队列不为空
queue.shift();
for (let j = 0; j < G.numVertexes; j++) {
//判断其他顶点若与当前顶点存在边且未访问过
if (G.arc[i][j] == 1 && !visited[j]) {
visited[j] = true;
console.log(G.vexs[i], '->', G.vexs[j])
console.log('打印顶点:', G.vexs[j])
queue.push(j) //将此顶点放入队列
}
}
}
}
}
}

运行:

console.log('**********创建图结构**********');
createMGraph();
console.log('**********广度优先遍历**********');
DFSTraverse();
console.log('**********广度优先遍历**********');
BFSTraverse();

结果:

JS实现图的创建和遍历的更多相关文章

  1. 图的创建和遍历(BFS/DFS)

    图的表示方法主要有邻接矩阵和邻接表.其中邻接表最为常用,因此这里便以邻接表为例介绍一下图的创建及遍历方法. 创建图用到的结构有两种:顶点及弧 struct ArcNode { int vertexIn ...

  2. JS DOM操作(创建、遍历、获取、操作、删除节点)

    创建节点 <!DOCTYPE html> <html lang="zh-CN"> <head> <meta charset="u ...

  3. JS实现二叉树的创建和遍历

    1.先说二叉树的遍历,遍历方式: 前序遍历:先遍历根结点,然后左子树,再右子树 中序遍历:先遍历左子树,然后根结点,再右子树 后续遍历:先遍历左子树,然后右子树,再根结点   上代码:主要还是利用递归 ...

  4. 数据结构代码整理(线性表,栈,队列,串,二叉树,图的建立和遍历stl,最小生成树prim算法)。。持续更新中。。。

    //归并排序递归方法实现 #include <iostream> #include <cstdio> using namespace std; #define maxn 100 ...

  5. 【算法导论】图的深度优先搜索遍历(DFS)

    关于图的存储在上一篇文章中已经讲述,在这里不在赘述.下面我们介绍图的深度优先搜索遍历(DFS). 深度优先搜索遍历实在访问了顶点vi后,访问vi的一个邻接点vj:访问vj之后,又访问vj的一个邻接点, ...

  6. 【算法导论】图的广度优先搜索遍历(BFS)

    图的存储方法:邻接矩阵.邻接表 例如:有一个图如下所示(该图也作为程序的实例): 则上图用邻接矩阵可以表示为: 用邻接表可以表示如下: 邻接矩阵可以很容易的用二维数组表示,下面主要看看怎样构成邻接表: ...

  7. JS前端图形化插件之利器Gojs组件(php中文网)

    JS前端图形化插件之利器Gojs组件(php中文网) 一.总结 一句话总结:php中文网我可以好好走一波 二.JS前端图形化插件之利器Gojs组件 参考: JS前端图形化插件之利器Gojs组件-js教 ...

  8. JS对象—数组总结(创建、属性、方法)

    JS对象—数组总结(创建.属性.方法) 1.创建字符串 1.1 new Array() var arr1 = new Array(); var arr2 = new Array(6); 数组的长度为6 ...

  9. js正则表达式图形化工具-rline

    github地址:https://github.com/finance-sh/rline 在线demo: http://lihuazhai.com/demo/test.html 这是一个js正则表达式 ...

随机推荐

  1. Android 为 TextView 添加超链接 (网址,邮件,电话)

    <string name="info">Cette application a été développée par <a href="http://w ...

  2. C博客的第1次作业--分支,顺序结构

    1.本章学习总结 1.1 思维导图 1.2本章学习体会,代码量学习体会 1.2.1学习体会 初步了解什么是C语言,明白了这门语言的基本运行功能.了解了关于c语言结构上,语法上的基本知识.下一步要进一步 ...

  3. shell、cmd、dos和脚本语言区别和联系

    问题一:DOS与windows中cmd区别   在windows系统中,“开始-运行-cmd”可以打开“cmd.exe”,进行命令行操作. 操作系统可以分成核心(kernel)和Shell(外壳)两部 ...

  4. html页面pc显示正常,在手机端适配也可以看整个页面

    <meta name="viewport" content="width=1250,initial-scale=0,maximum-scale=2"/&g ...

  5. html实现时间输入框

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  6. Make ISO安装ArchLinux加Cinnamon

    Arch安装一直对大家对普通用户来說一直很难.国外大神为Arch安装进行了优化提供了更方便的安装方式 官网:http://www.evolutionlinux.com/ 以下爲个人理解,供大家参考. ...

  7. the type initializer for 'system.drawingcore.gdiplus' threw an exception

    Centos 7 yum install libgdiplus-devel reboot之后生效 apt install libgdiplus cp /usr/lib/libgdiplus.so ~/ ...

  8. ubuntu16.04 安装 mysql-level

    ubuntu16.04 安装 mysql-level 1.下载 mysql-level(直接去官网下载rpm包,我的mysql-server是5.7.9.你下载自己对应的就可以了) 下载连接 2.rp ...

  9. 2016级算法第六次上机-F.AlvinZH的学霸养成记VI

    1082 AlvinZH的学霸养成记VI 思路 难题,凸包. 分析问题,平面上给出两类点,问能否用一条直线将二者分离. 首先应该联想到这是一个凸包问题,分别计算两类点的凸包,如果存在符合题意的直线,那 ...

  10. 使用hexo+coding搭建免费个人博客

    1.检测node和npm 先检测一下有没有node.js和npm $ node -v //如果有,说明node.js安装成功! $ node -v v8.4.0 //如果有,说明npm安装成功! $n ...