110. Dungeon

time limit per test: 0.25 sec. 
memory limit per test: 4096 KB

The mission of space explorers found on planet M the vast dungeon. One of the dungeon halls is fill with the bright spheres. The explorers find out that the light rays reflect from the surface of the spheres according the ordinary law (the incidence angle is equal to the reflectance angle, the incidence ray, the reflected ray and the perpendicular to the sphere surface lay in the one plane). The ancient legend says that if the light ray will reflect from the spheres in the proper order, than the door to the room with very precious ancient knowledge will open. You are not to guess the right sequence; your task is much simpler. You are given the positions and the radii of the spheres, the place where the laser shot was made and the direction of light propagation. And you must find out the sequence in which the light will be reflected from the spheres.

Input

The first line of input contains the single integer n (1≤n≤50) - the amount of the spheres. The next n lines contain the coordinates and the radii of the spheres xi, yi, zi, ri (the integer numbers less or equal to 10000 by absolute value). The last line contains 6 real numbers - the coordinates of two points. The first one gives the coordinates of the place of laser shot, and the second gives the direction in which it was made (the second point is the point on the ray). The starting point of the ray lies strictly outside of any sphere.

Output

Your program must output the sequence of sphere numbers (spheres are numbers from 1 as they was given in input), from which the light ray was reflected. If the ray will reflect more the 10 times, than you must output first 10, then a space and the word 'etc.' (without quotes). Notice: if the light ray goes at a tangent to the sphere you must assume that the ray was reflected by the sphere.

Sample Input 1

1
0 0 2 1
0 0 0 0 0 1

Sample Output 1

1

Sample Input 2

2
0 0 2 1
0 0 -2 1
0 0 0 0 0 100

Sample Output 2

1 2 1 2 1 2 1 2 1 2 etc.

感想:计算几何远观的时候最难
思路:
1 判断射线反射交哪个球 如果使用点斜式会在0处出问题,题解使用了起点到球的距离相对射线反向的倍数,注意当这个倍数为0的时候,只要不是从这个球反射出去的也成立(也就是开始的时候光源就在这个球表面)
2 求反射后的光线向量,做一个以入射光线为平行边的一边,法线(圆心-入射点方向)为对角线做一个菱形,明显反射光线就是另外一边..的反向(!),所以反射光线就是入射向量-入射光线在法线上的投影*2,在这个地方弄成法线在入射光线WA一次
投影为单位法线*(入射和法线的点积)
最后注意一下,先判断有没有第11次反射再输出"etc."
#include<cstdio>
#include <cstring>
#include <cmath>
using namespace std;
class pnt{
public :
double x,y,z;
pnt():x(0),y(0),z(0){}
pnt(double tx,double ty,double tz):x(tx),y(ty),z(tz){}
pnt operator -(pnt besub){
pnt ans;
ans.x=x-besub.x;
ans.y=y-besub.y;
ans.z=z-besub.z;
return ans;
}
pnt operator +(pnt beadd){
pnt ans;
ans.x=x+beadd.x;
ans.y=y+beadd.y;
ans.z=z+beadd.z;
return ans;
}
pnt operator*(double bemul){
pnt ans;
ans.x=x*bemul;
ans.y=y*bemul;
ans.z=z*bemul;
return ans;
}
pnt operator/(double bediv){
pnt ans;
ans.x=x/bediv;
ans.y=y/bediv;
ans.z=z/bediv;
return ans;
}
double dot(pnt bepnt){
return x*bepnt.x+y*bepnt.y+z*bepnt.z;
}
double caldis(pnt other){
return sqrt((x-other.x)*(x-other.x)+(y-other.y)*(y-other.y)+(z-other.z)*(z-other.z));
}
double len(){
return sqrt(x*x+y*y+z*z);
}
}; pnt ball[51],nowref,dir,start,normal;
double ballr[51],mindis,nowdis;
int n,nowball,nxtball;
const double inf=1e18;
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%lf%lf%lf%lf",&ball[i].x,&ball[i].y,&ball[i].z,ballr+i);
}
scanf("%lf%lf%lf%lf%lf%lf",&start.x,&start.y,&start.z,&dir.x,&dir.y,&dir.z);
dir=dir-start;
dir=dir/dir.len();
nowball=0;
for(int time=0;time<11;time++){
nxtball=0;
mindis=inf;
for(int i=1;i<=n;i++){//开始使用了点法式,不行...换成比例简洁不出错
if(i==nowball)continue;
double a=dir.x*dir.x+dir.y*dir.y+dir.z*dir.z;
double b=2*(dir.x*(start.x-ball[i].x)+dir.y*(start.y-ball[i].y)+dir.z*(start.z-ball[i].z));
double c=(start.x-ball[i].x)*(start.x-ball[i].x)+(start.y-ball[i].y)*(start.y-ball[i].y)+(start.z-ball[i].z)*(start.z-ball[i].z)-ballr[i]*ballr[i];
double delta=b*b-4*a*c;
if(delta<0)continue; nowdis=(-b+sqrt(delta))/2/a;
if(nowdis>=0&&nowdis<mindis){//ATTENTION
mindis=nowdis;
nxtball=i;
nowref=start+dir*(nowdis);
}
nowdis=(-b-sqrt(delta))/2/a;
if(nowdis>=0&&nowdis<mindis){//ATTENTION
mindis=nowdis;
nxtball=i;
nowref=start+dir*(nowdis);
}
} if(nxtball==0){break;}
if(time)putchar(' ');
if(time<10)printf("%d",nxtball);
else {puts("etc.");break;} normal=ball[nxtball]-nowref;
normal=normal/normal.len();
dir=dir-normal*(normal.dot(dir)*2.00);
start=nowref;
nowball=nxtball;
}
return 0;
}

  

SGU 110. Dungeon 计算几何 难度:3的更多相关文章

  1. sgu 110 Dungeon

    这道题是计算几何,这是写的第一道计算几何,主要是难在如何求入射光线的反射光线. 我们可以用入射光线 - 入射光线在法线(交点到圆心的向量)上的投影*2 来计算反射光线,自己画一个图,非常清晰明了. 具 ...

  2. sgu 129 Inheritance 凸包,线段交点,计算几何 难度:2

    129. Inheritance time limit per test: 0.25 sec. memory limit per test: 4096 KB The old King decided ...

  3. SGU 124. Broken line 射线法 eps的精准运用,计算几何 难度:3

    124. Broken line time limit per test: 0.25 sec. memory limit per test: 4096 KB There is a closed bro ...

  4. sgu 125 Shtirlits dfs 难度:0

    125. Shtirlits time limit per test: 0.25 sec. memory limit per test: 4096 KB There is a checkered fi ...

  5. hdu 3694 10 福州 现场 E - Fermat Point in Quadrangle 费马点 计算几何 难度:1

    In geometry the Fermat point of a triangle, also called Torricelli point, is a point such that the t ...

  6. hdu 3685 10 杭州 现场 F - Rotational Painting 重心 计算几何 难度:1

    F - Rotational Painting Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & % ...

  7. poj 3348 Cows 凸包 求多边形面积 计算几何 难度:0 Source:CCC207

    Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7038   Accepted: 3242 Description ...

  8. SGU 分类

    http://acm.sgu.ru/problemset.php?contest=0&volume=1 101 Domino 欧拉路 102 Coprime 枚举/数学方法 103 Traff ...

  9. 2018.10.15 bzoj4445: [Scoi2015]小凸想跑步(半平面交)

    传送门 话说去年的省选计算几何难度跟前几年比起来根本不能做啊(虽然去年考的时候并没有学过计算几何) 这题就是推个式子然后上半平面交就做完了. 什么? 怎么推式子? 先把题目的概率转换成求出可行区域. ...

随机推荐

  1. 強化 Python 在 Vim 裡的顏色

    我習慣用 putty 連 Unix server 開 screen,再用 vim 寫 Python.這篇記錄如何改善 Python 的顏色. 啟動 256 色 terminal 首先將可用的色彩數增加 ...

  2. numpy.random.randn()与rand()的区别【转】

    本文转载自:https://blog.csdn.net/u010758410/article/details/71799142 numpy中有一些常用的用来产生随机数的函数,randn()和rand( ...

  3. 【附4】springboot源码解析-run()

    public ConfigurableApplicationContext run(String... args) { StopWatch stopWatch = new StopWatch(); / ...

  4. WebApi——json返回多了 k_BackingField

    产生原因: model类添加了    [System.Serializable] 解决方案: xxxxx.WebApi\App_Start\WebApiConfig.cs的Register函数中添加如 ...

  5. The way to Go(7): 变量

    参考: Github: Go Github: The way to Go 变量 一般格式:var identifier type. Go在声明变量时将变量的类型放在变量的名称之后: 避免像 C 语言中 ...

  6. python 字符串转变量方法

    1.response=eval('requests.'+func.lower())(destURL, headers=requestHeaders, data=postData, params=que ...

  7. Quartz.NET简介及入门指南

    Quartz.NET简介 Quartz.NET是一个功能完备的开源调度系统,从最小的应用到大规模的企业系统皆可适用. Quartz.NET是一个纯净的用C#语言编写的.NET类库,是对非常流行的JAV ...

  8. ubuntu server 多网卡

    https://wenku.baidu.com/view/51fb15742f60ddccdb38a007.html

  9. 【转】DrawDibDraw

    http://blog.csdn.net/normallife/article/details/53177315 BMP位图文件结构及平滑缩放 用普通方法显示BMP位图,占内存大,速度慢,在图形缩小时 ...

  10. R-CNN(Rich feature hierarchies for accurate object detection and semantic segmentation)论文理解

    论文地址:https://arxiv.org/pdf/1311.2524.pdf 翻译请移步: https://www.cnblogs.com/xiaotongtt/p/6691103.html ht ...