【论文标题】Convolutional neural network architecture for geometric matching (2017CVPR)

【论文作者】Ignacio Rocco ,Relja Arandjelovi´,Josef Sivic

【论文链接】Paper (15-pages // Double column)

【Abstract】

We address the problem of determining correspondences between two images in agreement with a geometric model such as an affine or thin-plate spline transformation, and estimating its parameters. The contributions of this work are three-fold. First, we propose a convolutional neural network architecture for geometric matching. The architecture is based on three main components that mimic the standard steps of feature extraction, matching and simultaneous inlier detection and model parameter estimation, while being trainable end-to-end. Second, we demonstrate that the network parameters can be trained from synthetically generated imagery without the need for manual annotation and that our matching layer significantly increases generalization capabilities to never seen before images. Finally, we show that the same model can perform both instance-level and category-level matching giving state-of-the-art results on the challenging Proposal Flow dataset.

我们解决了两个图像之间的对应关系的问题,使用的是一个几何模型,例如仿射或薄板样条变换,并估计其参数。这项工作的贡献有三方面。

首先,我们提出了一个卷积神经网络结构的几何匹配。该架构基于三个主要组件,它们模拟特征提取、匹配和同步的异常检测和模型参数估计的标准步骤,同时可以进行端到端的训练。其次,我们证明了网络参数可以通过综合生成的图像进行训练,且无需人工标注,而且我们的匹配层显著提高了在从未见过图像之前的泛化能力。

最后,我们展示了相同的模型可以同时执行实例级和类别级匹配,为具有挑战性的建议流数据集提供最先进的结果。

【DeepLearning】用于几何匹配的卷积神经网络体系结构的更多相关文章

  1. 普适注意力:用于机器翻译的2D卷积神经网络,显著优于编码器-解码器架构

    现有的当前最佳机器翻译系统都是基于编码器-解码器架构的,二者都有注意力机制,但现有的注意力机制建模能力有限.本文提出了一种替代方法,这种方法依赖于跨越两个序列的单个 2D 卷积神经网络.该网络的每一层 ...

  2. CNN卷积神经网络在自然语言处理的应用

    摘要:CNN作为当今绝大多数计算机视觉系统的核心技术,在图像分类领域做出了巨大贡献.本文从计算机视觉的用例开始,介绍CNN及其在自然语言处理中的优势和发挥的作用. 当我们听到卷积神经网络(Convol ...

  3. 卷积神经网络CNN在自然语言处理的应用

    摘要:CNN作为当今绝大多数计算机视觉系统的核心技术,在图像分类领域做出了巨大贡献.本文从计算机视觉的用例开始,介绍CNN及其在自然语言处理中的优势和发挥的作用. 当我们听到卷积神经网络(Convol ...

  4. DeepLearning.ai学习笔记(四)卷积神经网络 -- week2深度卷积神经网络 实例探究

    一.为什么要进行实例探究? 通过他人的实例可以更好的理解如何构建卷积神经网络,本周课程主要会介绍如下网络 LeNet-5 AlexNet VGG ResNet (有152层) Inception 二. ...

  5. deeplearning.ai 卷积神经网络 Week 4 特殊应用:人脸识别和神经风格转换 听课笔记

    本周课程的主题是两大应用:人脸检测和风格迁移. 1. Face verification vs. face recognition Verification: 一对一的问题. 1) 输入:image, ...

  6. 吴恩达深度学习笔记(deeplearning.ai)之卷积神经网络(一)

    Padding 在卷积操作中,过滤器(又称核)的大小通常为奇数,如3x3,5x5.这样的好处有两点: 在特征图(二维卷积)中就会存在一个中心像素点.有一个中心像素点会十分方便,便于指出过滤器的位置. ...

  7. DeepLearning.ai学习笔记(四)卷积神经网络 -- week4 特殊应用:人力脸识别和神经风格转换

    一.什么是人脸识别 老实说这一节中的人脸识别技术的演示的确很牛bi,但是演技好尴尬,233333 啥是人脸识别就不用介绍了,下面笔记会介绍如何实现人脸识别. 二.One-shot(一次)学习 假设我们 ...

  8. 吴恩达深度学习笔记(deeplearning.ai)之卷积神经网络(CNN)(上)

    作者:szx_spark 1. Padding 在卷积操作中,过滤器(又称核)的大小通常为奇数,如3x3,5x5.这样的好处有两点: 在特征图(二维卷积)中就会存在一个中心像素点.有一个中心像素点会十 ...

  9. 卷积神经网络提取特征并用于SVM

    模式识别课程的一次作业.其目标是对UCI的手写数字数据集进行识别,样本数量大约是1600个.图片大小为16x16.要求必须使用SVM作为二分类的分类器. 本文重点是如何使用卷积神经网络(CNN)来提取 ...

随机推荐

  1. jQuery操作Frame(iFrame)

    没找到很好的方法只好用DOM方法与jquery方法结合的方式实现了 1.在父窗口中操作 选中IFRAME中的所有单选钮$(window.frames["iframe1"].docu ...

  2. 前端性能优化:配置ETag

    什么是ETag? 实体标签(EntityTag)是唯一标识了一个组件的一个特定版本的字符串,是web服务器用于确认缓存组件的有效性的一种机制,通常可以使用组件的某些属性来构造它. 条件GET请求 浏览 ...

  3. php5.6 的interactive模式

    1. 发现运行php 的interactive shell 的时候,不能输入一行执行一行,而要 输入完一整段内容,再按  ctrl + d才能执行这段内容. 原因是,没安装 readline这个模块, ...

  4. 【Python】torrentParser1.03

    #------------------------------------------------------------------------------------ # torrentParse ...

  5. Rust 的安装和使用举例

    一.环境 二.安装 $curl -sSf https://static.rust-lang.org/rustup.sh | sh Welcome to Rust. This script will d ...

  6. Mysql数据库常用分库和分表方式

    http://blog.csdn.net/clevercode/article/details/50877580 1 分库 1.1 按照功能分库 按照功能进行分库.常见的分成6大库:    1 用户类 ...

  7. 微软BI 之SSAS 系列 - 基于雪花模型的维度设计

    基于雪花模型的维度以下面的 Product 产品与产品子类别,产品类别为例. DimProduct 表和 DimProductSubcategory 表有外键关系,而 DimProductSubcat ...

  8. stingray前端架构总体设计及运行过程

    SPA 单页应用程序,在一个页面内用ajax技术实现所有的功能的web程序,我们称之为单页应用,明显的特点就是第一次加载之后地址栏非参数部分不再发生变化.大家观察会发现 WIP系统就是一个SPA.我们 ...

  9. Maven的JAR包仓库,不用再百度搜JAR包了!

    http://search.maven.org/ 今天初学Maven,发现Maven的中央仓库里差点儿什么jar都有...........还有各种版本号... 你值得拥有!

  10. 翻页效果实现turn.js

    使用插件turn.js实现翻书功能. 看下效果:http://yk.wanxue.cn/2019/01/yd/ 当然第一版做的时候加载很慢很慢,原版插件会把所有图片加载出来再显示页面.很不爽的体验就改 ...