全源最短路径 - floyd算法 - O(N ^ 3)
Floyd-Warshall算法的原理是动态规划。
设Di,j,k为从i到j的只以(1..k)集合中的节点为中间节点的最短路径的长度。
- 若最短路径经过点k,则Di,j,k = Di,k,k − 1 + Dk,j,k − 1;
- 若最短路径不经过点k,则Di,j,k = Di,j,k − 1。
因此,Di,j,k = min(Di,k,k − 1 + Dk,j,k − 1,Di,j,k − 1)。
for (k = ; k <= n; k++) //经过编号为前k个的顶点
{
for (i = ; i <= n; i++)
{
for (j = ; j < i; j++)
{
if ( == A[i][k] || == A[k][j])
continue;
if ( == A[i][j] || A[i][k] + A[k][j] < A[i][j])
A[i][j] = A[j][i] = A[i][k] + A[k][j];
}
}
}
全源最短路径 - floyd算法 - O(N ^ 3)的更多相关文章
- 单源最短路径Dijkstra算法,多源最短路径Floyd算法
1.单源最短路径 (1)无权图的单源最短路径 /*无权单源最短路径*/ void UnWeighted(LGraph Graph, Vertex S) { std::queue<Vertex&g ...
- 多源最短路径Floyd算法
多源最短路径是求图中任意两点间的最短路,采用动态规划算法,也称为Floyd算法.将顶点编号为0,1,2...n-1首先定义dis[i][j][k]为顶点 i 到 j 的最短路径,且这条路径只经过最大编 ...
- 单源最短路径——Floyd算法
正如我们所知道的,Floyd算法用于求最短路径.Floyd算法可以说是Warshall算法的扩展,三个for循环就可以解决问题,所以它的时间复杂度为O(n^3). Floyd算法的基本思想如下:从任意 ...
- Johnson 全源最短路径算法
解决单源最短路径问题(Single Source Shortest Paths Problem)的算法包括: Dijkstra 单源最短路径算法:时间复杂度为 O(E + VlogV),要求权值非负: ...
- Floyd-Warshall 全源最短路径算法
Floyd-Warshall 算法采用动态规划方案来解决在一个有向图 G = (V, E) 上每对顶点间的最短路径问题,即全源最短路径问题(All-Pairs Shortest Paths Probl ...
- Johnson 全源最短路径算法学习笔记
Johnson 全源最短路径算法学习笔记 如果你希望得到带互动的极简文字体验,请点这里 我们来学习johnson Johnson 算法是一种在边加权有向图中找到所有顶点对之间最短路径的方法.它允许一些 ...
- 7-8 哈利·波特的考试(25 分)(图的最短路径Floyd算法)
7-8 哈利·波特的考试(25 分) 哈利·波特要考试了,他需要你的帮助.这门课学的是用魔咒将一种动物变成另一种动物的本事.例如将猫变成老鼠的魔咒是haha,将老鼠变成鱼的魔咒是hehe等等.反方向变 ...
- 图->最短路径->多源最短路径(弗洛伊德算法Floyd)
文字描述 求每一对顶点间的最短路径,可以每次以一个顶点为源点,重复执行迪杰斯特拉算法n次.这样,便可求得每一对顶点之间的最短路径.总的执行时间为n^3.但是还有另外一种求每一对顶点间最短路径的方法,就 ...
- 最短路径Floyd算法【图文详解】
Floyd算法 1.定义概览 Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被 ...
随机推荐
- ELK学习笔记之Logstash详解
0x00 Logstash概述 官方介绍:Logstash is an open source data collection engine with real-time pipelining cap ...
- 20145104张家明 《Java程序设计》第7周学习总结
20145104张家明 <Java程序设计>第7周学习总结 教材学习内容总结 第13章 简单认识时间和日期 -时间的度量:GMT.UT.TAI.UTC.Unix.epoch. -UTC:保 ...
- MVC 学习
基础概念学习:http://www.cnblogs.com/meetyy/p/3451933.html 路由:http://www.cnblogs.com/meetyy/p/3453189.html ...
- Django框架(四) Django之视图层
视图函数 一个视图函数,简称视图,是一个简单的Python 函数,它接受Web请求并且返回Web响应.响应可以是一张网页的HTML内容,一个重定向,一个404错误,一个XML文档,或者一张图片. . ...
- luogu P1880石子归并
石子归并 luogu1880 传送门 noi1995 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得 ...
- FJUT Home_W的gcd(乱搞)题解
题意: 给出一个序列a1,a2,a3,……an. HOME_W想在其中挖掘二元组,其中二元组的挖掘方法如下. 对于任意整数 l,r ,可得到一个二元组(l,gcd(al,al+1,……,ar)). H ...
- SPOJ - POLYNOM Polynomial(数论乱搞)题解
题意 :给你n个数,问你是否存在一个多项式(最多三次方)满足f(i)= xi. 思路:讲一个神奇的思路: x3 - (x - 1)3 = 3x2 - 3x + 1 x2 - (x - 1)2 = 2x ...
- FAST Hello World - Preparation for software's running environment
Ubuntu 14.04 安装 libpcap-1.1.1 & libpnet-1.1.4 & NMAC function lib 参考: NetMagic.org yacc: com ...
- Linux——权限管理命令简单笔记
首先linux中的权限分为三种rwx 代表字符 权限 对文件的含义 对目录的含义 r 读权限 可以查看文件 内容 (cat, more, head, tail) 可以列出目录中 的内容 (ls) w ...
- C++中int、string等常见类型转换
1.int型与string型的互相转换 最佳实践: int型转string型 void int2str(const int &int_temp,string &string_temp) ...