全源最短路径 - floyd算法 - O(N ^ 3)
Floyd-Warshall算法的原理是动态规划。
设Di,j,k为从i到j的只以(1..k)集合中的节点为中间节点的最短路径的长度。
- 若最短路径经过点k,则Di,j,k = Di,k,k − 1 + Dk,j,k − 1;
- 若最短路径不经过点k,则Di,j,k = Di,j,k − 1。
因此,Di,j,k = min(Di,k,k − 1 + Dk,j,k − 1,Di,j,k − 1)。
for (k = ; k <= n; k++) //经过编号为前k个的顶点
{
for (i = ; i <= n; i++)
{
for (j = ; j < i; j++)
{
if ( == A[i][k] || == A[k][j])
continue;
if ( == A[i][j] || A[i][k] + A[k][j] < A[i][j])
A[i][j] = A[j][i] = A[i][k] + A[k][j];
}
}
}
全源最短路径 - floyd算法 - O(N ^ 3)的更多相关文章
- 单源最短路径Dijkstra算法,多源最短路径Floyd算法
1.单源最短路径 (1)无权图的单源最短路径 /*无权单源最短路径*/ void UnWeighted(LGraph Graph, Vertex S) { std::queue<Vertex&g ...
- 多源最短路径Floyd算法
多源最短路径是求图中任意两点间的最短路,采用动态规划算法,也称为Floyd算法.将顶点编号为0,1,2...n-1首先定义dis[i][j][k]为顶点 i 到 j 的最短路径,且这条路径只经过最大编 ...
- 单源最短路径——Floyd算法
正如我们所知道的,Floyd算法用于求最短路径.Floyd算法可以说是Warshall算法的扩展,三个for循环就可以解决问题,所以它的时间复杂度为O(n^3). Floyd算法的基本思想如下:从任意 ...
- Johnson 全源最短路径算法
解决单源最短路径问题(Single Source Shortest Paths Problem)的算法包括: Dijkstra 单源最短路径算法:时间复杂度为 O(E + VlogV),要求权值非负: ...
- Floyd-Warshall 全源最短路径算法
Floyd-Warshall 算法采用动态规划方案来解决在一个有向图 G = (V, E) 上每对顶点间的最短路径问题,即全源最短路径问题(All-Pairs Shortest Paths Probl ...
- Johnson 全源最短路径算法学习笔记
Johnson 全源最短路径算法学习笔记 如果你希望得到带互动的极简文字体验,请点这里 我们来学习johnson Johnson 算法是一种在边加权有向图中找到所有顶点对之间最短路径的方法.它允许一些 ...
- 7-8 哈利·波特的考试(25 分)(图的最短路径Floyd算法)
7-8 哈利·波特的考试(25 分) 哈利·波特要考试了,他需要你的帮助.这门课学的是用魔咒将一种动物变成另一种动物的本事.例如将猫变成老鼠的魔咒是haha,将老鼠变成鱼的魔咒是hehe等等.反方向变 ...
- 图->最短路径->多源最短路径(弗洛伊德算法Floyd)
文字描述 求每一对顶点间的最短路径,可以每次以一个顶点为源点,重复执行迪杰斯特拉算法n次.这样,便可求得每一对顶点之间的最短路径.总的执行时间为n^3.但是还有另外一种求每一对顶点间最短路径的方法,就 ...
- 最短路径Floyd算法【图文详解】
Floyd算法 1.定义概览 Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被 ...
随机推荐
- 深入理解kafka
摘自: <kafka权威指南> 集群间成员关系 Kafka 使用Zoo keeper 来维护集群成员的信息.每个broker 都有一个唯一标识符,这个标识符可以在配置文件里指定,也可以自动 ...
- Python Web学习笔记之TCP/IP、Http、Socket的区别
经常在笔试.面试或者工作的时候听到这些协议,虽然以前没怎么涉及过,但至少知道这些是和网络编程密不可分的知识,作为一个客户端开发程序员,如果可以懂得网络编程的话,他的作用和能力肯定会提升一个档次.原因很 ...
- ubuntu 更改python3为默认版本
ubuntu 自带两个python版本,一个是python2一个是python3 默认版本是python2的,想要更改ubuntu python3 为默认版本, 只需要两行命令: sudo updat ...
- bzoj 2118 墨墨的等式 - 图论最短路建模
墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. Input ...
- Spring DBCP用xml和properties2种格式配置DataSource
Spring提供数据库连接池:DBCP配置DataSource并且获取连接完成数据库操作: Spring帮助文档的地址: http://static.springsource.org/spring/d ...
- Serv-U FTP服务器安装及使用图解教程
Serv-U,是一种被广泛运用的FTP服务器端软件,支持3x/9x/ME/NT/2K等全Windows系列.可以设定多个FTP服务器.限定登录用户的权限.登录主目录及空间大小等,功能非常完备. 它具有 ...
- Linq in GroupBy GroupJoin
还是上一份的代码例子: public class Person { public int ID { get; set; } public string Name { get; set; } publi ...
- POJ 2449 Remmarguts' Date(第K短路 + A* + 最短路)题解
题意:找出第k短路,输出长度,没有输出-1 思路:这题可以用A*做.A*的原理是这样,我们用一个函数:f = g + h 来表示当前点的预期步数,f代表当前点的预期步数,g代表从起点走到当前的步数,h ...
- POJ 1236 Network of Schools(tarjan)题解
题意:一个有向图.第一问:最少给几个点信息能让所有点都收到信息.第二问:最少加几个边能实现在任意点放信息就能传遍所有点 思路:把所有强连通分量缩成一点,然后判断各个点的入度和出度 tarjan算法:问 ...
- 【第十六章】 springboot + OKhttp + String.format
模拟浏览器向服务器发送请求四种方式: jdk原生的Http包下的一些类 httpclient(比较原始,不怎么用了):第一章 HttpClient的使用 Okhttp(好用,推荐) retrofit( ...