最短路径算法dijkstra的matlab实现
function Dijkstra(Graph, source):
2
3 create vertex set Q
4
5 for each vertex v in Graph: // Initialization
6 dist[v] ← INFINITY // Unknown distance from source to v
7 prev[v] ← UNDEFINED // Previous node in optimal path from source
8 add v to Q // All nodes initially in Q (unvisited nodes)
9
10 dist[source] ← 0 // Distance from source to source
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u] // Source node will be selected first
14 remove u from Q
15
16 for each neighbor v of u: // where v is still in Q.
17 alt ← dist[u] + length(u, v)
18 if alt < dist[v]: // A shorter path to v has been found
19 dist[v] ← alt
20 prev[v] ← u
21
22 return dist[], prev[]
程序运行在matlab 7.0正常,1为出发节点,有向图的结构如下:

这里是我写的matlab程序。
%初始化
MAXNUM=5;
MAXINT=32767;
dij=MAXINT*ones(MAXNUM,MAXNUM);
dij(1,2)=10;
dij(1,4)=30;
dij(1,5)=100;
dij(2,3)=50;
dij(3,5)=10;
dij(4,3)=20;
dij(4,5)=60;
dij(1,1)=0;
dij(2,2)=0;
dij(3,3)=0;
dij(4,4)=0;
dij(5,5)=0;
V=1:MAXNUM;%全部节点
S=[1];%已分配节点
m=1;%过渡节点
ite=2;
U=2:MAXNUM;%未分配的节点
%重复,直到U为空
%将U中的节点不断添加到S中,同时记录过渡节点和最短路径
dist=dij(1,:);%节点1到其它节点的初始距离值,每次迭代更新一次
dist1=dist;
while(length(U)>0)
dist1(dist1==min(dist1))=[]; %已分配的节点对应的距离从dist1中删除
m=find(dist==min(dist1));%记录dist1当前的最小值在dist中的下标
S(ite)=m;%将过渡节点加入S
U(find(U==m))=[];%将过渡节点从U中删除
%比较1经过m与不经过m到未分配节点的距离,dist中的距离更新为较小者
for u=1:length(U)
if(dist(m)+dij(m,U(u))<dist(U(u)))
dist1(find(dist1==dist(U(u))))=dist(m)+dij(m,U(u));%dist1中的值同步更新
dist(U(u))=dist(m)+dij(m,U(u));
end
end
ite=ite+1;
end
%保存到每个节点的最短路径,每行对应每个节点的路径和最短距离,其实就是将S逆序输出
path(1,1)=1;
for node=2:MAXNUM
location=find(S==node);
path(node,1)=node;
i=2;
for s=location:-1:2
if(dij(S(s-1),S(s))~=MAXINT)
path(node,i)=S(s-1);
i=i+1;
end
end
path(node,i)=dist(node);
end
%TODO:程序中用到了find()方法,这是一个bug,find可能会返回不止一个值,取其中任意一个就行。
参考----http://www.wutianqi.com/?p=1890
或者
https://blog.csdn.net/cxllyg/article/details/7604812
最短路径算法dijkstra的matlab实现的更多相关文章
- 最短路径算法Dijkstra和A*
在设计基于地图的游戏,特别是isometric斜45度视角游戏时,几乎必须要用到最短路径算法.Dijkstra算法是寻找当前最优路径(距离原点最近),如果遇到更短的路径,则修改路径(边松弛). Ast ...
- 最短路径算法-Dijkstra算法的应用之单词转换(词梯问题)(转)
一,问题描述 在英文单词表中,有一些单词非常相似,它们可以通过只变换一个字符而得到另一个单词.比如:hive-->five:wine-->line:line-->nine:nine- ...
- 有向有权图的最短路径算法--Dijkstra算法
Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Di ...
- 带权图的最短路径算法(Dijkstra)实现
一,介绍 本文实现带权图的最短路径算法.给定图中一个顶点,求解该顶点到图中所有其他顶点的最短路径 以及 最短路径的长度.在决定写这篇文章之前,在网上找了很多关于Dijkstra算法实现,但大部分是不带 ...
- 最短路径算法——Dijkstra,Bellman-Ford,Floyd-Warshall,Johnson
根据DSqiu的blog整理出来 :http://dsqiu.iteye.com/blog/1689163 PS:模板是自己写的,如有错误欢迎指出~ 本文内容框架: §1 Dijkstra算法 §2 ...
- 最短路径算法——Dijkstra算法
在路由选择算法中都要用到求最短路径算法.最出名的求最短路径算法有两个,即Bellman-Ford算法和Dijkstra算法.这两种算法的思路不同,但得出的结果是相同的. 下面只介绍Dijkstra算法 ...
- 最短路径算法——Dijkstra算法与Floyd算法
转自:https://www.cnblogs.com/smile233/p/8303673.html 最短路径 ①在非网图中,最短路径是指两顶点之间经历的边数最少的路径. AE:1 ADE:2 ...
- 最短路径算法-Dijkstra
Dijkstra是解决单源最短路径的一般方法,属于一种贪婪算法. 所谓单源最短路径是指在一个赋权有向图中,从某一点出发,到另一点的最短路径. 以python代码为例,实现Dijkstra算法 1.数据 ...
- 单源最短路径算法---Dijkstra
Dijkstra算法树解决有向图G=(V,E)上带权的单源最短路径问题,但是要求所有边的权值非负. 解题思路: V表示有向图的所有顶点集合,S表示那么一些顶点结合,从源点s到该集合中的顶点的最终最短路 ...
随机推荐
- 【Java】HashMap源码分析——基本概念
在JDK1.8后,对HashMap源码进行了更改,引入了红黑树.在这之前,HashMap实际上就是就是数组+链表的结构,由于HashMap是一张哈希表,其会产生哈希冲突,为了解决哈希冲突,HashMa ...
- 【Spring】13、使用Spring 3的@value简化配置文件的读取
Spring 3支持@value注解的方式获取properties文件中的配置值,大简化了读取配置文件的代码. 1.在applicationContext.xml文件中配置properties文件 & ...
- ViewModel处理View相关事件的多种方式(非技术贴,仅学习总结)
众所周知,在UWP中,微软为我们提供了一种新的绑定方式:x:bind,它是基于编译时的绑定.在性能方面,运行时绑定Binding与它相比还是有些逊色的.因此针对一些确定的.不需要变更的数据,我们完全有 ...
- blfs(systemd版本)学习笔记-前几章节的脚本配置
我的邮箱地址:zytrenren@163.com欢迎大家交流学习纠错! 记录blfs书籍前几个章节的配置内容. bash shell启动文件章节 1.切换root用户 su 2.创建/etc/prof ...
- linux学习笔记-文件相关知识
我的邮箱地址:zytrenren@163.com欢迎大家交流学习纠错! 一.文件属性 在当前用户家目录下以ls -al命令输出为例: -rw-r--r-- 1 renren ...
- Django Rest framework 之 权限
django rest framework 之 认证(一) django rest framework 之 权限(二) django rest framework 之 节流(三) django res ...
- js+springMVC 提交数组数据到后台
1.ajax 代码 var ids =new Array(); $.ajax({ type: "POST", url: "/user/downReport", ...
- VUE组件 之 Toast (Vue.extend 方式)
一.效果图 二.说明 这类提示框组件我们通常都会直接在 JS 代码中进行调用.像下面这样: this.$toast('别点啦,到头啦!') 但看到网上大多数还是通过 component 方式实现的, ...
- 【Java入门提高篇】Day23 Java容器类详解(六)HashMap源码分析(中)
上一篇中对HashMap中的基本内容做了详细的介绍,解析了其中的get和put方法,想必大家对于HashMap也有了更好的认识,本篇将从了算法的角度,来分析HashMap中的那些函数. HashCod ...
- nginx的应用(window环境下)
nginx(背景) nginx是一个高性能的HTTP服务器,以前我经常在linux系统中配置,主要做反向代理和负载均衡,最近根据业务需要,需要在window中配置反向和负载,下面就介绍一下nginx的 ...