线段树优化连边

要求点 \(x\) 向区间 \([L, R]\) 连边, 一次的复杂度上限为 \(O(n)\)

然后弄成线段树的结构



先父子连边边权为 \(0\)

这样连边就只需要连父亲就可以等效于连了区间内每个点

空间复杂度为线段树大小, 一次区间连边时间复杂度为 \(O(\log n)\)

这是连入边, 连出边的话反向建线段树内边即可

CF786B Legacy

默认情况下他不能用这把枪开启任何传送门。在网络上有q个售卖这些传送枪的使用方案。每一次你想要实施这个方案时你都可以购买它,但是每次购买后只能使用一次。每个方案的购买次数都是无限的。

网络上一共有三种方案可供购买: 1.开启一扇从星球v到星球u的传送门; 2.开启一扇从星球v到标号在[l,r]区间范围内任何一个星球的传送门。(即这扇传送门可以从一个星球出发通往多个星球) 3.开启一扇从标号在[l,r]区间范围内任何一个星球到星球v的传送门。(即这扇传送门可以从多个星球出发到达同一个星球)

Rick并不知道Morty在哪儿,但是Unity将要通知他Morty的具体位置,并且他想要赶快找到通往所有星球的道路各一条并立刻出发。因此对于每一个星球(包括地球本身)他想要知道从地球到那个星球所需的最小钱数。

Solution

线段树优化连边即可

Code

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#define LL long long
#define REP(i, x, y) for(LL i = (x);i <= (y);i++)
using namespace std;
LL RD(){
LL out = 0,flag = 1;char c = getchar();
while(c < '0' || c >'9'){if(c == '-')flag = -1;c = getchar();}
while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
return flag * out;
}
const LL maxn = 100019 << 2, inf = 0xfffffffffffffff;
LL head[maxn],nume = 1;
struct Node{
LL v,dis,nxt;
}E[maxn << 3];
void add(LL u,LL v,LL dis){
E[++nume].nxt = head[u];
E[nume].v = v;
E[nume].dis = dis;
head[u] = nume;
}
LL num, nr, s;
#define lid (id << 1)
#define rid (id << 1) | 1
LL tot;
struct seg_tree{
LL l, r;
LL Index[2];
}tree[maxn << 2];
void build(LL id, LL l, LL r){
tree[id].l = l, tree[id].r = r;
if(l == r){
tree[id].Index[0] = tree[id].Index[1] = l;
return ;
}
tree[id].Index[0] = ++tot;//入边
tree[id].Index[1] = ++tot;//out
LL mid = (l + r) >> 1;
build(lid, l, mid), build(rid, mid + 1, r);
add(tree[id].Index[0], tree[lid].Index[0], 0);
add(tree[id].Index[0], tree[rid].Index[0], 0);
add(tree[lid].Index[1], tree[id].Index[1], 0);
add(tree[rid].Index[1], tree[id].Index[1], 0);
}
void IG(LL id, LL u, LL dis, LL l, LL r, LL o){//0 --> in, 1 --> out
if(tree[id].l == l && tree[id].r == r){
if(o == 2)add(u, tree[id].Index[0], dis);
else add(tree[id].Index[1], u, dis);
return ;
}
LL mid = (tree[id].l + tree[id].r) >> 1;
if(mid < l)IG(rid, u, dis, l, r, o);
else if(mid >= r)IG(lid, u, dis, l, r, o);
else IG(lid, u, dis, l, mid, o), IG(rid, u, dis, mid + 1, r, o);
}
void init(){
num = RD(), nr = RD(), s = RD();
tot = num;
build(1, 1, num);
REP(i, 1, nr){
LL cmd = RD(), u = RD();
if(cmd == 1){
LL v = RD(), dis = RD();
add(u, v, dis);
}
else{
LL l = RD(), r = RD(), dis = RD();
IG(1, u, dis, l, r, cmd);
}
}
}
LL d[maxn];
bool vis[maxn];
void Djs(LL s){
REP(i, 1, tot)d[i] = inf;
priority_queue<pair<LL, LL> >Q;
d[s] = 0;
Q.push(make_pair(-d[s], s));
while(!Q.empty()){
LL u = Q.top().second;Q.pop();
if(vis[u])continue;
vis[u] = 1;
for(LL i = head[u];i;i = E[i].nxt){
LL v = E[i].v, dis = E[i].dis;
if(d[u] + dis < d[v]){
d[v] = d[u] + dis;
Q.push(make_pair(-d[v], v));
}
}
}
}
void solve(){
Djs(s);
REP(i, 1, num){
if(d[i] == inf)printf("-1 ");
else printf("%lld ", d[i]);
}
puts("");
}
int main(){
init();
solve();
return 0;
}

CF786B Legacy && 线段树优化连边的更多相关文章

  1. CF786B Legacy 线段树优化建图 + spfa

    CodeForces 786B Rick和他的同事们做出了一种新的带放射性的婴儿食品(???根据图片和原文的确如此...),与此同时很多坏人正追赶着他们.因此Rick想在坏人们捉到他之前把他的遗产留给 ...

  2. CF786B Legacy 线段树优化建图

    问题描述 CF786B LG-CF786B 题解 线段树优化建图 线段树的一个区间结点代表 \([l,r]\) 区间点. 然后建立区间点的时候就在线段树上建边,有效减少点的个数,从而提高时空效率. 优 ...

  3. [CF787D]遗产(Legacy)-线段树-优化Dijkstra(内含数据生成器)

    Problem 遗产 题目大意 给出一个带权有向图,有三种操作: 1.u->v添加一条权值为w的边 2.区间[l,r]->v添加权值为w的边 3.v->区间[l,r]添加权值为w的边 ...

  4. Codeforces.786B.Legacy(线段树优化建图 最短路Dijkstra)

    题目链接 \(Description\) 有\(n\)个点.你有\(Q\)种项目可以选择(边都是有向边,每次给定\(t,u,v/lr,w\)): t==1,建一条\(u\to v\)的边,花费\(w\ ...

  5. B - Legacy CodeForces - 787D 线段树优化建图+dij最短路 基本套路

    B - Legacy CodeForces - 787D 这个题目开始看过去还是很简单的,就是一个最短路,但是这个最短路的建图没有那么简单,因为直接的普通建图边太多了,肯定会超时的,所以要用线段树来优 ...

  6. G. 神圣的 F2 连接着我们 线段树优化建图+最短路

    这个题目和之前写的一个线段树优化建图是一样的. B - Legacy CodeForces - 787D 线段树优化建图+dij最短路 基本套路 之前这个题目可以相当于一个模板,直接套用就可以了. 不 ...

  7. DS线段树优化最短路&&01bfs浅谈

    1简介 为什么需要?原因很简单,当需要有大量的边去连时,用线段树优化可以直接用点连向区间,或从区间连向点,或从区间连向区间,如果普通连边,复杂度是不可比拟的.下面简单讲解一下线段树(ST)优化建图. ...

  8. [USACO2005][POJ3171]Cleaning Shifts(DP+线段树优化)

    题目:http://poj.org/problem?id=3171 题意:给你n个区间[a,b],每个区间都有一个费用c,要你用最小的费用覆盖区间[M,E] 分析:经典的区间覆盖问题,百度可以搜到这个 ...

  9. Weak Pair---hud5877大连网选(线段树优化+dfs)

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=5877  题意:给你一颗树,有n个节点,每个节点都有一个权值v[i]:现在求有多少对(u,v ...

随机推荐

  1. Linux内核分析 读书笔记 (第四章)

    第四章 进程调度 调度程序负责决定将哪个进程投入运行,何时运行以及运行多长时间.进程调度程序可看做在可运行态进程之间分配有限的处理器时间资源的内核子系统.只有通过调度程序的合理调度,系统资源才能最大限 ...

  2. win10装MySQL5.7

    越来越发现装MySQL很费劲啊,装了N次,都很懵逼,找对的解决方案很重要. Mysql5.7下载地址:http://xiazai.zol.com.cn/detail/4/33431.shtml 安装步 ...

  3. SQL大杂烩

    DML 语句(数据操作语言)Insert.Update. Delete.Merge DDL 语句(数据定义语言)Create.Alter. Drop.Truncate DCL 语句(数据控制语言)Gr ...

  4. poj 1723 SOLDIERS 带权中位数

    题目 http://poj.org/problem?id=1723 题解 带权中位数类型的题目~ 可以先考虑降维,最后集合的y坐标,明显是y坐标的中位数的位置,容易求出y方向的贡献res_y.比较麻烦 ...

  5. nodejs框架对比

    最近想实操nodejs,在选择框架的时候,查阅后大致整理为如下表格内容. 此处列举下才开始使用eggjs框架: 1.其基于koa开发: 2.若为企业级项目,用其脚手架egg-inint搭建会快很多,后 ...

  6. laravel 数据库获取值的常用方法

    ---恢复内容开始--- find($id) 需要一个主键$id并返回一个模型对象,若不存在则返回null findOrFail($id) 需要一个主键$id并返回一个模型对象,若不存在则发生错误,抛 ...

  7. Oracle12c Clone PDB 的方法

    1. 创建PDB的存放路径,举例: 2. 设置 数据库创建数据文件的目录 alter system set db_Create_file_dest='C:\app\Administrator\orad ...

  8. Lodop打印二维码内容长度不同如何大小相同

    利用Loodop打印控件打印二维码的时候,往往传入的数值是变量,有的只有一个数字,有的却一大堆数字和字母,根据内容长度不同,二维码大小也不同,这样如果批量打印二维码标签,传入的数据是不同的,会造成有的 ...

  9. python下对appium服务端的操作

    appium -p 4703 -bp 5500 -U 127.0.0.1:5005 -p 指的是·appium的服务器端口 -bp 指的是 连接安卓设备端口 -U 指的是 安卓设备 大体思路: 1. ...

  10. codeforces580C

    Kefa and Park CodeForces - 580C 一棵以1为根的树,树上有些点是红的.一个叶子是合法的当且仅当从根到它的路径上出现的连续红点个数不超过m.求有多少个叶子是合法的.Inpu ...