Problem Description
As we know, Rikka is poor at math. Yuta is worrying about this situation, so he gives Rikka some math tasks to practice. There is one of them:

Yuta has an array A with n numbers. Then he makes m operations on it.

There are three type of operations:

1 l r x : For each i in [l,r], change A[i] to A[i]+x
2 l r : For each i in [l,r], change A[i] to ⌊√A[i]⌋
3 l r : Yuta wants Rikka to sum up A[i] for all i in [l,r]

It is too difficult for Rikka. Can you help her?

Input
The first line contains a number t(1<=t<=100), the number of the testcases. And there are no more than 5 testcases with n>1000.

For each testcase, the first line contains two numbers n,m(1<=n,m<=100000). The second line contains n numbers A[1]~A[n]. Then m lines follow, each line describe an operation.

It is guaranteed that 1<=A[i],x<=100000.

Output
For each operation of type 3, print a lines contains one number -- the answer of the query.

Sample Input
1
5 5
1 2 3 4 5
1 3 5 2
2 1 4
3 2 4
2 3 5
3 1 5

Sample Output
5
6

题意

实现区间加,区间开根,区间求和

题解

一开始以为可以暴力开根,然后统计区间内是否全为1,后来发现开完根再加又可以开根所以单次复杂度就变成O(n)

后来发现区间开根会出现一大片相同的区域,所以可以再维护一个最大最小值,如果maxx[rt]-minn[rt]==(LL)sqrt(maxx[rt])-(LL)sqrt(minn[rt])||maxx[rt]==minn[rt]就说明区间开根后所有值都相同,那就可以直接更新区间

代码

 #include<bits/stdc++.h>
using namespace std; #define LL long long const int maxn=1e5+; LL sum[maxn<<],lazy[maxn<<],minn[maxn<<],maxx[maxn<<]; void pushdown(int l,int r,int rt)
{
if(lazy[rt]==)return;
lazy[rt<<]+=lazy[rt];
lazy[rt<<|]+=lazy[rt];
int mid=(l+r)>>;
sum[rt<<]+=lazy[rt]*(mid-l+);
sum[rt<<|]+=lazy[rt]*(r-mid);
maxx[rt<<]+=lazy[rt];
maxx[rt<<|]+=lazy[rt];
minn[rt<<]+=lazy[rt];
minn[rt<<|]+=lazy[rt];
lazy[rt]=;
}
void pushup(int rt)
{
sum[rt]=sum[rt<<]+sum[rt<<|];
minn[rt]=min(minn[rt<<],minn[rt<<|]);
maxx[rt]=max(maxx[rt<<],maxx[rt<<|]);
}
void build(int l,int r,int rt)
{
lazy[rt]=;
if(l==r)
{
scanf("%lld",&sum[rt]);
minn[rt]=maxx[rt]=sum[rt];
return;
}
int mid=(l+r)>>;
build(l,mid,rt<<);
build(mid+,r,rt<<|);
pushup(rt);
}
void update(int L,int R,LL C,int l,int r,int rt)
{
if(L<=l&&r<=R)
{
lazy[rt]+=C;
sum[rt]+=(r-l+)*C;
maxx[rt]+=C;
minn[rt]+=C;
return;
}
int mid=(l+r)>>;
pushdown(l,r,rt);
if(L<=mid)update(L,R,C,l,mid,rt<<);
if(R>mid)update(L,R,C,mid+,r,rt<<|);
pushup(rt);
}
void Sqrt(int L,int R,int l,int r,int rt)
{
if(L<=l&&r<=R)
{
if(maxx[rt]-minn[rt]==(LL)sqrt(maxx[rt])-(LL)sqrt(minn[rt])||maxx[rt]==minn[rt])
{
LL z=(LL)sqrt(maxx[rt])-maxx[rt];
sum[rt]+=z*(r-l+);
maxx[rt]+=z,minn[rt]+=z,lazy[rt]+=z;
return;
}
}
int mid=(l+r)>>;
pushdown(l,r,rt);
if(L<=mid)Sqrt(L,R,l,mid,rt<<);
if(R>mid)Sqrt(L,R,mid+,r,rt<<|);
pushup(rt);
}
LL query(int L,int R,int l,int r,int rt)
{
if(L<=l&&r<=R)
return sum[rt];
int mid=(l+r)>>;
LL ans=;
pushdown(l,r,rt);
if(L<=mid)ans+=query(L,R,l,mid,rt<<);
if(R>mid)ans+=query(L,R,mid+,r,rt<<|);
pushup(rt);
return ans;
}
int main()
{
int t,n,m;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
build(,n,);
for(int i=;i<m;i++)
{
int op,l,r;
LL x;
scanf("%d%d%d",&op,&l,&r);
if(op==)
{
scanf("%lld",&x);
update(l,r,x,,n,);
}
else if(op==)
{
Sqrt(l,r,,n,);
}
else if(op==)
{
printf("%lld\n",query(l,r,,n,));
}
}
}
return ;
}
/*
1
5 10
1 2 3 4 5
1 1 3 10
2 1 3
2 1 3
2 1 3
2 1 3
3 1 3
*/

HDU 5828 Rikka with Sequence(线段树区间加开根求和)的更多相关文章

  1. hdu 5828 Rikka with Sequence 线段树

    Rikka with Sequence 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5828 Description As we know, Rik ...

  2. HDU 5828 Rikka with Sequence (线段树+剪枝优化)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5828 给你n个数,三种操作.操作1是将l到r之间的数都加上x:操作2是将l到r之间的数都开方:操作3是 ...

  3. 判断相同区间(lazy) 多校8 HDU 5828 Rikka with Sequence

    // 判断相同区间(lazy) 多校8 HDU 5828 Rikka with Sequence // 题意:三种操作,1增加值,2开根,3求和 // 思路:这题与HDU 4027 和HDU 5634 ...

  4. 2016暑假多校联合---Rikka with Sequence (线段树)

    2016暑假多校联合---Rikka with Sequence (线段树) Problem Description As we know, Rikka is poor at math. Yuta i ...

  5. HDU.1556 Color the ball (线段树 区间更新 单点查询)

    HDU.1556 Color the ball (线段树 区间更新 单点查询) 题意分析 注意一下pushdown 和 pushup 模板类的题还真不能自己套啊,手写一遍才行 代码总览 #includ ...

  6. HDU.1689 Just a Hook (线段树 区间替换 区间总和)

    HDU.1689 Just a Hook (线段树 区间替换 区间总和) 题意分析 一开始叶子节点均为1,操作为将[L,R]区间全部替换成C,求总区间[1,N]和 线段树维护区间和 . 建树的时候初始 ...

  7. 【CF52C】Circular RMQ(线段树区间加减,区间最值)

    给定一个循环数组a0, a1, a2, …, an-1,现在对他们有两个操作: Inc(le, ri, v):表示区间[le, ri]范围的数值增加v Rmq(le, ri):表示询问区间[le, r ...

  8. Codeforces Round #250 (Div. 1) D. The Child and Sequence 线段树 区间取摸

    D. The Child and Sequence Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest ...

  9. HDU 1698 Just a Hook(线段树 区间替换)

    Just a Hook [题目链接]Just a Hook [题目类型]线段树 区间替换 &题解: 线段树 区间替换 和区间求和 模板题 只不过不需要查询 题里只问了全部区间的和,所以seg[ ...

随机推荐

  1. IIS 集成模式 导致 AjaxPro 无法正常运行

    web.config 配置如下: system.web/httphandlers <httpHandlers> <add verb="POST,GET" path ...

  2. Django学习笔记之URL与视图

    视图 视图一般都写在app的views.py中.并且视图的第一个参数永远都是request(一个HttpRequest)对象.这个对象存储了这个http请求的所有信息,其中包括携带的参数以及一些头部信 ...

  3. find查找文件的时间问题

    很多细节方面的东西没有到真正用的时候,是觉察不出来的,因为这个时间的问题出了问题,现在好好理一下,这个find的时间很容易就搞混了,一段时间不用,也忘了,也反映出来了自己的基础知识不是很牢固啊   f ...

  4. py-day3-2 python 函数递归

    # 递归 def calc(n): print(n) if int(n/2) == 0: return n res = calc(int(n/2)) return res res = calc(10) ...

  5. 2018年,Java程序员转型大数据开发,是不是一个好选择?

    近日网上有一篇关于Java程序员职场生存现状的文章“2017年 Java 程序员,风光背后的危机”,在Java程序员圈子里引起了广泛关注和热议. 2017年,Java 程序员面临更加激烈的竞争. 不得 ...

  6. 如何将maven的jar项目简单快速的转变成war项目

    第一种方法: 首先在pom文件中的version标签下下方加入 <packaging>war</packaging>标签 然后右键项目 Java EE Tools 选择 Gen ...

  7. 把java程序作为windows服务运行

    参考: https://www.jianshu.com/p/fc9e4ea61e13 https://blog.csdn.net/qq_28566071/article/details/8088250 ...

  8. [UE4]瞬移

    1.设置Input,事件名称设置为Teleport 2.设置事件Teleport 3.

  9. Pycharm 设置上下左右快捷键

    Pycharm的版本 Note:英文版的Pycharm,使用中文版的对照即可. 1. 打开Pycharm软件→File→Settings 2.Keymap→Editor Actions→搜索(up)→ ...

  10. (转)EF5+SQLserver2012迁移到EF6+mysql5.5.47

    原文地址:https://www.cnblogs.com/tinyjian/p/6235014.html:https://www.cnblogs.com/tinyjian/p/6235397.html ...