BZOJ.3453.tyvj 1858 XLkxc(拉格朗日插值)
题意即求$$\sum_{i=0}n\sum_{j=1}{a+id}\sum_{x=1}jxk$$
我们知道最后一个\(\sum\)是自然数幂和,设\(f(n)=\sum_{x=1}^nx^k\),这是一个\(k+1\)次多项式,可以插值求出(当然本题只需要求出任意\(k+3\)个值即可不需要插值)。
令\(g(n)=\sum_{i=1}^nf(i)\),(打表)差分可知这是一个\(k+2\)次多项式。
同样令\(h(n)=\sum_{i=0}^ng(a+id)\),同样差分可知这是一个\(k+3\)次多项式。
所以用拉格朗日插值我们代入\(k+4\)个值就可以求出\(h(n)\)了。
也就是先求\(k+3\)个\(f(x)\)的值,再求出\(k+3\)个\(g(x)\)的值,然后对\(g\)插值求\(k+4\)个\(g(a+xd)\),前缀和一下就有了\(h\)的\(k+4\)个值,然后再插一次就得到\(h(n)\)了。(嵌套好鬼畜...)
注意\(f,g,h\)都是个前缀和...
注意这题两倍的模数会爆int。可以用unsigned int。
从这题可以看出:
- 多一个\(\sum\)一般会使多项式次数+1。
- 插值可以嵌套,且复杂度不变,仍是\(O(k^2)\)。
这是伯努利数的做法:https://blog.csdn.net/qq_20669971/article/details/65938763。
//824kb 28ms
#include <cstdio>
#include <algorithm>
#define mod 1234567891
#define Mod(x) x>=mod&&(x-=mod)
#define Add(x,v) (x+=v)>=mod&&(x-=mod)
typedef long long LL;
typedef unsigned int uint;
const int N=130;
uint g[N],h[N],ifac[N];
inline uint FP(uint x,uint k)
{
uint t=1;
for(; k; k>>=1,x=1ll*x*x%mod)
if(k&1) t=1ll*t*x%mod;
return t;
}
uint Lagrange(uint *y,const int m,uint x)
{
static uint pre[N],suf[N];
pre[0]=x, suf[m+1]=1;
for(int i=1; i<m; ++i) pre[i]=1ll*pre[i-1]*(x+mod-i)%mod;
for(int i=m; i; --i) suf[i]=1ll*suf[i+1]*(x+mod-i)%mod;
LL ans=0;
for(int i=0,up,down; i<=m; ++i)
{
if(i) up=1ll*pre[i-1]*suf[i+1]%mod*y[i]%mod;
else up=1ll*suf[i+1]*y[i]%mod;
down=(m-i)&1?mod-1ll*ifac[i]*ifac[m-i]%mod:1ll*ifac[i]*ifac[m-i]%mod;
ans+=1ll*up*down%mod;
}
return ans%mod;
}
int main()
{
ifac[N-1]=1119688141;//是129!的逆元不是129的!!!今天错了两次这个真是醉了=-=
for(int i=N-1; i; --i) ifac[i-1]=1ll*ifac[i]*i%mod;
int T,K; uint a,n,d; g[0]=0;
for(scanf("%d",&T); T--; )
{
scanf("%d%u%u%u",&K,&a,&n,&d);
for(int i=1; i<=K+2; ++i) g[i]=g[i-1]+FP(i,K), Mod(g[i]); //f = \sum i^k
for(int i=1; i<=K+2; ++i) Add(g[i],g[i-1]); //g = \sum f(i)
h[0]=Lagrange(g,K+2,a);
for(int i=1; i<=K+3; ++i) Add(a,d), h[i]=h[i-1]+Lagrange(g,K+2,a), Mod(h[i]);
printf("%d\n",(int)Lagrange(h,K+3,n));
}
return 0;
}
BZOJ.3453.tyvj 1858 XLkxc(拉格朗日插值)的更多相关文章
- 【BZOJ】3453: tyvj 1858 XLkxc 拉格朗日插值(自然数幂和)
[题意]给定k<=123,a,n,d<=10^9,求: $$f(n)=\sum_{i=0}^{n}\sum_{j=1}^{a+id}\sum_{x=1}^{j}x^k$$ [算法]拉格朗日 ...
- BZOJ 3453 - tyvj 1858 XLkxc(插值+推式子)
题面传送门 首先根据我们刚学插值时学的理论知识,\(f(i)\) 是关于 \(i\) 的 \(k+1\) 次多项式.而 \(g(x)\) 是 \(f(x)\) 的前缀和,根据有限微积分那一套理论,\( ...
- BZOJ3453: tyvj 1858 XLkxc(拉格朗日插值)
题意 题目链接 Sol 把式子拆开,就是求这个东西 \[\sum_{i = 0} ^n \sum_{j = 1}^{a + id} \sum_{x =1}^j x^k \pmod P\] 那么设\(f ...
- bzoj3453: tyvj 1858 XLkxc(拉格朗日插值)
传送门 \(f(n)=\sum_{i=1}^ni^k\),这是自然数幂次和,是一个以\(n\)为自变量的\(k+1\)次多项式 \(g(n)=\sum_{i=1}^nf(i)\),因为这东西差分之后是 ...
- [BZOJ3453]tyvj 1858 XLkxc:拉格朗日插值
分析 之前一直不知道拉格朗日插值是干什么用的,只会做模板题,做了这道题才明白这个神奇算法的用法. 由题意可知,\(f(x)\)是关于\(x\)的\(k+1\)次函数,\(g(x)\)是关于\(x\)的 ...
- 【BZOJ】2655: calc 动态规划+拉格朗日插值
[题意]一个序列$a_1,...,a_n$合法当且仅当它们都是[1,A]中的数字且互不相同,一个序列的价值定义为数字的乘积,求所有序列的价值和.n<=500,A<=10^9,n+1< ...
- bzoj 4559 [JLoi2016]成绩比较——拉格朗日插值
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4559 关于拉格朗日插值,可以看这些博客: https://www.cnblogs.com/E ...
- BZOJ.2655.calc(DP/容斥 拉格朗日插值)
BZOJ 洛谷 待补.刚刚政治会考完来把它补上了2333.考数学去了. DP: 首先把无序化成有序,选严格递增的数,最后乘个\(n!\). 然后容易想到令\(f_{i,j}\)表示到第\(i\)个数, ...
- BZOJ.4559.[JLOI2016]成绩比较(DP/容斥 拉格朗日插值)
BZOJ 洛谷 为什么已经9点了...我写了多久... 求方案数,考虑DP... \(f[i][j]\)表示到第\(i\)门课,还有\(j\)人会被碾压的方案数. 那么\[f[i][j]=\sum_{ ...
随机推荐
- Variable binding depth exceeds max-specpdl-size
(setq max-specpdl-size 5) ; default is 1000, reduce the backtrace level (setq debug-on-error t) ; no ...
- ORA-27157 ORA-27300 ORA-27301
目录: 问题现象 原因分析 解决方案 问题现象: 收到同事反馈,数据库无法连接.于是登录服务器发现,数据库莫名挂掉.实例crash,日志中记录截取一段如下: Errors in file /u01/a ...
- 火狐浏览器无故卡死,未响应或者占大量cpu资源解决方案
这是火狐社区的文章,对火狐浏览器无故卡死,未响应或者占大量cpu资源有详细的说明和解决,记录下!!! ++++++++++++++++++++++++++++++++ Firefox 挂起 如果您的 ...
- Python学生信息管理系统的开发
# 第一题:设计一个全局变量,来保存很多个学生信息:学生(学号, 姓名,年龄):思考要用怎样的结构来保存:# 第二题:在第一题基础上,完成:让用户输入一个新的学生信息(学号,姓名,年龄):你将其保存在 ...
- HDU 2112 HDU Today(最短路径+map)
HDU Today Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...
- hdfs数据到hive中,以及hdfs数据隐身理解
hdfs数据到hive中: 假设hdfs中已存在好了数据,路径是hdfs:/localhost:9000/user/user_w/hive_g2park/user_center_enterprise_ ...
- 解决bootstrap多模态框跳转时页面左移问题
衍生问题暂未发现.... 忽略左右跳动视觉差 解决方法: 在bootstrap的js搜索padding-right,然后找到“+this.scrollbarWidth”,删掉即可.
- [转] React 中组件间通信的几种方式
在使用 React 的过程中,不可避免的需要组件间进行消息传递(通信),组件间通信大体有下面几种情况: 父组件向子组件通信 子组件向父组件通信 跨级组件之间通信 非嵌套组件间通信 下面依次说下这几种通 ...
- [转] jQuery的deferred对象详解
jQuery的开发速度很快,几乎每半年一个大版本,每两个月一个小版本. 每个版本都会引入一些新功能.今天我想介绍的,就是从jQuery 1.5.0版本开始引入的一个新功能----deferred对象. ...
- [WC2014]紫荆花之恋
题解: 首先考虑点分治 dis(i,u)+dis(i,v)<=value[u]+value[v] 移项就很容易发现用平衡树可以很简单的维护这个东西 但是有重复,需要在下一层的每个平衡树内减去这个 ...