Update on 1.5

学了 zhou888 的写法,真是又短又快。

并且空间是 \(O(n)\) 的,速度十分优秀。

题意

LOJ #2538. 「PKUWC 2018」Slay the Spire

题解

首先我们考虑拿到一副牌如何打是最优的,不难发现是将强化牌从大到小能打就打,最后再从大到小打攻击牌 。

为什么呢 ?

证明(简单说明) : 如果不是这样 , 那么我们就是有强化牌没有用 , 且攻击牌超过两张 .

我们考虑把最小的那张攻击牌拿出来 , 然后放入一张强化牌 .

\(\because~w_i \ge 2\) 且 最小那张攻击牌的攻击力 \(a_{\min}\) 不大于所有攻击牌的总和 \(a_{sum}\) 的一半

\(\therefore\) 修改后造成的伤害绝对不比前面少 . 得证.

我们只要枚举上下分别用了多少张牌 , 假设 加强 用了 \(a\) 张 , 攻击 用了 \(b\) 张 . \((a + b = m)\)

那么我们只要分两种情况考虑了 :

  1. \(a < k:\) 那么我们加强可以全用完 , 攻击用前 \(k - a\) 大的 ;
  2. \(a \ge k:\) 这个加强用前 \(k - 1\) 大的 , 攻击用一张最大的 .

令 \(f_i\) 为选 \(i\) 张强化牌能得到的最优倍率之和,显然强化牌我们从大到小取是最优的。

假设当前取到第 \(j\) 张牌。

那么有如下转移:

\[f_i =
\begin{cases}
(f_i + f_{i - 1}) \times a[j] &i < k\\
f_i + f_{i - 1} &i \ge k
\end{cases}
\]

上面那种情况是还能用强化牌,下面已经不能加新的强化牌了,所以不乘上倍率。(注意 \(f_0 = 1\) )

同样我们设 \(g_i\) 为选 \(i\) 张攻击牌能得到的最优攻击之和,此处我们需要从小到大排序。

有如下转移:

\[g_i = g_i + \displaystyle {j - 1 \choose i - 1} \times a[j] +
\begin{cases}
0 &\le m - (k - 1)\\
g_{i - 1} & >m - (k - 1)
\end{cases}
\]

考虑这张牌我们先放进来,不难发现对于所有 \(i \le m - (k - 1)\) 也就是只能打一张的,我们只统计了这张打的贡献。

如果能打很多张,这样转移的话就能保证我们尽量取的是靠后的那些元素。

最后答案直接就是 \(\displaystyle \sum_{i = 0}^{m} f_{i} g_{m-i}\) 。

总结

需要啥就设啥,想清楚情况再 \(dp\) 。

代码

#include <bits/stdc++.h>

#define For(i, l, r) for (register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for (register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Rep(i, r) for (register int i = (0), i##end = (int)(r); i < i##end; ++i)
#define Set(a, v) memset(a, v, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define debug(x) cout << #x << ": " << (x) << endl using namespace std; template<typename T> inline bool chkmin(T &a, T b) { return b < a ? a = b, 1 : 0; }
template<typename T> inline bool chkmax(T &a, T b) { return b > a ? a = b, 1 : 0; } inline int read() {
int x(0), sgn(1); char ch(getchar());
for (; !isdigit(ch); ch = getchar()) if (ch == '-') sgn = -1;
for (; isdigit(ch); ch = getchar()) x = (x * 10) + (ch ^ 48);
return x * sgn;
} void File() {
#ifdef zjp_shadow
freopen ("2538.in", "r", stdin);
freopen ("2538.out", "w", stdout);
#endif
} const int N = 3e3 + 1e2, Mod = 998244353; inline int fpm(int x, int power) {
int res = 1;
for (; power; power >>= 1, x = 1ll * x * x % Mod)
if (power & 1) res = 1ll * res * x % Mod;
return res;
} int fac[N], ifac[N]; void Math_Init(int maxn) {
fac[0] = ifac[0] = 1;
For (i, 1, maxn) fac[i] = 1ll * fac[i - 1] * i % Mod;
ifac[maxn] = fpm(fac[maxn], Mod - 2);
Fordown (i, maxn - 1, 1) ifac[i] = ifac[i + 1] * (i + 1ll) % Mod;
} inline int Comb(int n, int m) {
if (n < 0 || m < 0 || n < m) return 0;
return 1ll * fac[n] * ifac[m] % Mod * ifac[n - m] % Mod;
} int n, m, k, a[N], f[N], g[N]; int main () { File(); Math_Init(3000); for (int cases = read(); cases; -- cases) { n = read(); m = read(); k = read();
For (i, 1, n) a[i] = read(); For (i, 1, max(n, m)) f[i] = g[i] = 0; sort(a + 1, a + n + 1, greater<int>()); f[0] = 1;
For (i, 1, n) Fordown (j, min(i, m), 0)
if (j <= k - 1) f[j] = (f[j] + 1ll * f[j - 1] * a[i]) % Mod;
else f[j] = (f[j] + f[j - 1]) % Mod; For (i, 1, n) a[i] = read();
sort(a + 1, a + n + 1);
For (i, 1, n) Fordown (j, min(i, m), 0)
if (j <= m - (k - 1))
g[j] = (g[j] + 1ll * Comb(i - 1, j - 1) * a[i]) % Mod;
else
g[j] = (g[j] + g[j - 1] + 1ll * Comb(i - 1, j - 1) * a[i]) % Mod; int ans = 0;
For (i, 0, m)
ans = (ans + 1ll * f[i] * g[m - i]) % Mod;
printf ("%d\n", ans); } return 0; }

LOJ #2538. 「PKUWC 2018」Slay the Spire (期望dp)的更多相关文章

  1. loj2538 「PKUWC 2018」Slay the Spire

    pkusc 快到了--做点题涨涨 rp. ref我好菜啊QAQ. 可以发现期望只是一个幌子.我们的目的是:对于所有随机的选择方法(一共 \(\binom{2n}{m}\)种),这些选择方法都最优地打出 ...

  2. LOJ #2541. 「PKUWC 2018」猎人杀(容斥 , 期望dp , NTT优化)

    题意 LOJ #2541. 「PKUWC 2018」猎人杀 题解 一道及其巧妙的题 , 参考了一下这位大佬的博客 ... 令 \(\displaystyle A = \sum_{i=1}^{n} w_ ...

  3. LOJ #2540. 「PKUWC 2018」随机算法(概率dp)

    题意 LOJ #2540. 「PKUWC 2018」随机算法 题解 朴素的就是 \(O(n3^n)\) dp 写了一下有 \(50pts\) ... 大概就是每个点有三个状态 , 考虑了但不在独立集中 ...

  4. LOJ #2542. 「PKUWC 2018」随机游走(最值反演 + 树上期望dp + FMT)

    写在这道题前面 : 网上的一些题解都不讲那个系数是怎么推得真的不良心 TAT (不是每个人都有那么厉害啊 , 我好菜啊) 而且 LOJ 过的代码千篇一律 ... 那个系数根本看不出来是什么啊 TAT ...

  5. LOJ #2537. 「PKUWC 2018」Minimax (线段树合并 优化dp)

    题意 小 \(C\) 有一棵 \(n\) 个结点的有根树,根是 \(1\) 号结点,且每个结点最多有两个子结点. 定义结点 \(x\) 的权值为: 1.若 \(x\) 没有子结点,那么它的权值会在输入 ...

  6. LOJ #2802. 「CCC 2018」平衡树(整除分块 + dp)

    题面 LOJ #2802. 「CCC 2018」平衡树 题面有点难看...请认真阅读理解题意. 转化后就是,给你一个数 \(N\) ,每次选择一个 \(k \in [2, N]\) 将 \(N\) 变 ...

  7. loj 2778「BalticOI 2018」基因工程

    loj luogu 这题和NOI那道向量内积一个套路 首先考虑求两行的不同元素个数,可以转化成一个行向量\(a\)和列向量\(b\)相乘得到一个值.如果只有\(A,C\)两种字符,那么令对应权值\(A ...

  8. 「PKUWC 2018」Minimax

    传送门:Here 一道线段树合并好题 如果要维护点$ x$的信息,相当于合并$ x$的两棵子树 对于这题显然有:任何叶子节点的权值都可能出现在其祖先上 因而我们只需要在线段树合并的时候维护概率即可 我 ...

  9. loj2540 「PKUWC 2018」随机算法

    pkusc 快到了--做点题涨涨 rp. 记 \(f(S,i)\) 表示 \(S\) 这个集合是决计不能选的(要么属于独立集,要么和独立集相连),或称已经考虑了的,\(i\) 表示此集合对应的最大独立 ...

随机推荐

  1. 转的一个Java基本功

    京京肚肚撸代码 2017-04-11 00:21 很早之前, 记得一次面试, 面试官问存储金钱用什么数据类型? 当时只知道8种数据类型(boolean, byte, short, int, long, ...

  2. WPF C#截图功能 仿qq截图

    原文:WPF C#截图功能 仿qq截图 先上效果图 源码下载地址:http://download.csdn.net/detail/candyvoice/9788099 描述:启动程序,点击窗口butt ...

  3. 洛谷 P4409 [ZJOI2006] 皇帝的烦恼

    题目链接-> OVO 题解: 很久没有写博客了,可能是因为最近太颓废了吧. 刚刚考完期末考试,无比期盼早点外出学习,不要面对成绩,害怕. #include <cstdio> #inc ...

  4. 面试3——java集合类面试题总结

    1.总结一下啊hashmap和hashtable的知识点? 1)关于hashmap的说法 HashMap实际上是一个“链表散列”的数据结构,在jdk1.8中添加了红黑树.HashMap底层结构是一个数 ...

  5. 案例学Python--案例四:Django实现一个网站的雏形(2)

    续上篇,用Django创建了一个Web,我们肯定想展示自己的页面,简单点,我们想看到自己的HelloWorld.此处要从项目的配置说起,方法和路径配对了,展现页面分分钟的事情. 先上效果图吧:     ...

  6. (11)学习笔记 ) ASP.NET CORE微服务 Micro-Service ---- Thrift高效通讯 (完结)

    一. 什么是 RPC Restful 采用 Http 进行通讯,优点是开放.标准.简单.兼容性升级容易: 缺点是性能略低.在 QPS 高或者对响应时间要求苛刻的服务上,可以用 RPC(Remote P ...

  7. Netdata---Linux系统性能实时监控平台部署记录

    通常来说,作为一个Linux的SA,很有必要掌握一个专门的系统监控工具,以便能随时了解系统资源的占用情况.下面就介绍下一款Linux性能实时监测工具-Netdata,它是Linux系统实时性能监测工具 ...

  8. Spring RPC 入门学习(3)-获取Student对象

    Spring RPC传递对象. 1. 新建RPC接口:StudentInterface.java package com.cvicse.ump.rpc.interfaceDefine; import ...

  9. S2X环境搭建与示例运行

    S2X环境搭建与示例运行 http://dbis.informatik.uni-freiburg.de/forschung/projekte/DiPoS/S2X.html 环境 Maven proje ...

  10. 20135337——Linux内核分析:第十七章 模块与设备

    第17章 模块与设备 设备类型:在所有 Unix 系统中为了统一普通设备的操作所采用的分类. 模块: Linux 内核中用于按需加载和卸载目标码的机制. 内核对象:内核数据结构中支持面向对象的简单操作 ...