【LOJ#572】Misaka Network 与求和(莫比乌斯反演,杜教筛,min_25筛)
【LOJ#572】Misaka Network 与求和(莫比乌斯反演,杜教筛,min_25筛)
题面
\]
其中\(f(x)\)表示\(x\)的次大质因子。
题解
这个数据范围不是杜教筛就是\(min\_25\)筛了吧。。。
看到次大质因子显然要\(min\_25\)筛了吧。。。
莫比乌斯反演的部分比较简单,懒得写过程了。
\]
后面带个指数好麻烦啊,就假装\(f(x)=f(x)^k\)吧。。。
显然要求的就是\(f\)和\(\mu\)狄利克雷卷积的前缀和。。。
令\(\displaystyle S(n)=\sum_{i=1}^n (f*\mu)(i)\),一脸杜教筛的感觉,类似杜教筛来写式子。
\]
看到\(\mu\)了,直接令\(g(x)=1\),\((f*u*g)(i)=(f*(u*1))(i)=(f*e)(i)=f(i)\)。
写出来就是:
\]
然后考虑怎么求\(\displaystyle \sum_{i=1}^n f(i)\),一脸\(min\_25\)筛。
行,本来以为不是\(min\_25\)筛就是杜教筛,没想到两个一起来。
好了,实现啥的就可以看看代码了。
复杂度因为杜教筛不能提前筛好一部分前缀和,所以似乎是\(O(n^{3/4})\)???
不太会算复杂度,那就当做\(O(\mbox{跑得过})\)了。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<map>
using namespace std;
#define ll long long
#define uint unsigned int
#define MAX 100000
int K,blk;uint n;
int w[MAX],id1[MAX],id2[MAX],m;
int pri[MAX],tot;
bool zs[MAX];
uint g[MAX],prik[MAX];
uint fpow(uint a,int b)
{
uint s=1;
while(b){if(b&1)s*=a;a*=a;b>>=1;}
return s;
}
int getid(int x){return (x<=blk)?id1[x]:id2[n/x];}
void pre(int n)
{
for(int i=2;i<=n;++i)
{
if(!zs[i])pri[++tot]=i,prik[tot]=fpow(i,K);;
for(int j=1;j<=tot&&i*pri[j]<=n;++j)
{
zs[i*pri[j]]=true;
if(i%pri[j]==0)break;
}
}
}
uint calc(int x,int y)
{
if(x<=1||pri[y]>x)return 0;
uint ret=(g[getid(x)]-y+1)*prik[y-1];
for(int i=y;i<=tot&&1ll*pri[i]*pri[i]<=x;++i)
{
ll t1=pri[i],t2=1ll*pri[i]*pri[i];
for(int e=1;t2<=x;++e,t1=t2,t2*=pri[i])
ret+=calc(x/t1,i+1)+prik[i];
}
return ret;
}
uint M[MAX];bool vis[MAX];
uint S(int n)
{
if(vis[getid(n)])return M[getid(n)];
uint ret=calc(n,1)+g[getid(n)];
for(int i=2,j;i<=n;i=j+1)
j=n/(n/i),ret-=(j-i+1)*S(n/i);
vis[getid(n)]=true;
return M[getid(n)]=ret;
}
int main()
{
scanf("%u%d",&n,&K);pre(blk=sqrt(n));
for(uint i=1,j;i<=n;i=j+1)
{
j=n/(n/i);w[++m]=n/i;g[m]=w[m]-1;
if(w[m]<=blk)id1[w[m]]=m;
else id2[n/w[m]]=m;
}
for(int j=1;j<=tot&&1ll*pri[j]*pri[j]<=n;++j)
for(int i=1;i<=m&&1ll*pri[j]*pri[j]<=w[i];++i)
g[i]-=g[getid(w[i]/pri[j])]-(j-1);
uint ans=0,lt=0,nw;
for(uint i=1,j;i<=n;i=j+1)
{
j=n/(n/i);nw=S(j);
ans+=(uint)1*(n/i)*(n/i)*(nw-lt);
lt=nw;
}
printf("%u\n",ans);
return 0;
}
【LOJ#572】Misaka Network 与求和(莫比乌斯反演,杜教筛,min_25筛)的更多相关文章
- loj 572 Misaka Network 与求和 —— min_25筛
题目:https://loj.ac/problem/572 推式子:https://www.cnblogs.com/cjoieryl/p/10150718.html 又学习了一下杜教筛hh: 原来 u ...
- LOJ572. 「LibreOJ Round #11」Misaka Network 与求和 [莫比乌斯反演,杜教筛,min_25筛]
传送门 思路 (以下令\(F(n)=f(n)^k\)) 首先肯定要莫比乌斯反演,那么可以推出: \[ ans=\sum_{T=1}^n \lfloor\frac n T\rfloor^2\sum_{d ...
- [LOJ 572] Misaka Network 与求和
一.题目 点此看题 二.解法 直接推柿子吧: \[\sum_{i=1}^n\sum_{j=1}^nf(\gcd(i,j))^k \] \[\sum_{d=1}^nf(d)^k\sum_{i=1}^{n ...
- 【XSY2754】求和 莫比乌斯反演 杜教筛
题目描述 给你\(n,p\),求 \[ \sum_{i=1}^n\sum_{j=1}^i\sum_{k=1}^i\gcd(i,j,k)\mod p \] \(n\leq {10}^9\) 题解 \[ ...
- [复习]莫比乌斯反演,杜教筛,min_25筛
[复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_ ...
- 【bzoj3930】[CQOI2015]选数 莫比乌斯反演+杜教筛
题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一 ...
- [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)
[BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数 ...
- LOJ#6491. zrq 学反演(莫比乌斯反演 杜教筛)
题意 题目链接 Sol 反演套路题? 不过最后一步还是挺妙的. 套路枚举\(d\),化简可以得到 \[\sum_{T = 1}^m (\frac{M}{T})^n \sum_{d \ | T} d \ ...
- LOJ#6229. 这是一道简单的数学题(莫比乌斯反演+杜教筛)
题目链接 \(Description\) 求\[\sum_{i=1}^n\sum_{j=1}^i\frac{lcm(i,j)}{gcd(i,j)}\] 答案对\(10^9+7\)取模. \(n< ...
- 【bzoj4176】Lucas的数论 莫比乌斯反演+杜教筛
Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i< ...
随机推荐
- linux 与 windows 挖门罗币总结
比特币之前一直很火,初次了解的时候才2000RMB一枚..看不懂哇,错失良机...当然了,看得懂也不买不起..当时还是穷学生. 最近又一直看到黑客利用linux漏洞挖门罗币获利的新闻,决定好生研究一下 ...
- Helper
//检测端口是否使用 public static bool VerifyListenerPort(int port) { bool inUse = false; System.Net.NetworkI ...
- CSS 分类 (Classification) 实例
CSS 分类 (Classification) 实例CSS 分类属性 (Classification)CSS 分类属性允许你控制如何显示元素,设置图像显示于另一元素中的何处,相对于其正常位置来定位元素 ...
- RetrieveFavicon 获取任何站点的 favicon
原文发表于我的技术博客 开源了一个获取任何站点 favicon 的类库,供使用. 原文发表于我的技术博客 RetrieveFavicon Project GitHub Retrieve favicon ...
- windows 脚本
sudo.vbs http://blog.csdn.net/qidi_huang/article/details/52242053 c:\windows\sudo.vbs 'ShellExecute ...
- 查看服务器系统资源(cpu,内容)利用率前几位的进程的方法
在日常运维工作中,我们经常需要了解服务器上的系统资源的使用情况,要清楚知道一些重要进程所占的资源比例.这就需要熟练掌握下面几个命令的使用: 1)查看占用CPU最高的5个进程 # ps aux | so ...
- MFS+Keepalived双机高可用热备方案操作记录
基于MFS的单点及手动备份的缺陷,考虑将其与Keepalived相结合以提高可用性.在Centos下MooseFS(MFS)分布式存储共享环境部署记录这篇文档部署环境的基础上,只需要做如下改动: 1) ...
- 树莓派3代b型静态IP设置,和ssh的wlan配置
https://blog.csdn.net/qq_36305492/article/details/78607557
- 实验三 Java敏捷开发与xp实现
实验内容: 1. XP基础 2. XP核心实践 3. 相关工具 实验要求 1.没有Linux基础的同学建议先学习<Linux基础入门(新版)><Vim编辑器> 课程 2.完成实 ...
- 删除运行时权限不足,cmd开启管理员
管理员帐号活跃代码:net user administrator /active:yes 搜索cmd-右键以管理员身份运行 切换administrator帐号登录 操作后最后关闭这么高的权限,避免被非 ...