bzoj 3295 动态逆序对 (三维偏序,CDQ+树状数组)
链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3295
思路:
可以将这道题看成倒着插入,这样就可以转化成求逆序对数,用CDQ分治降维,正反用树状数组求两遍逆序对就好了。
这道题还可以用在线的树套树或者可持久化线段树来写。。
实现代码:
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int M = 2e5+;
struct node{
int t,x,y;
int kind,id;
node() {}
node(int a,int b,int c,int d,int e = ):t(a),x(b),y(c),kind(d),id(e){}
bool operator < (const node &k) const {
if(x == k.x) return y<k.y;
return x < k.x;
}
};
int n,m,a[M],pos[M],x,c[M],tim,len;
node q[M],t[M];
ll ans[M];
void add(int x,int val){
while(x <= n){
c[x] += val;
x += (x&-x);
}
} int getsum(int x){
int sum = ;
while(x){
sum += c[x];
x -= (x&-x);
}
return sum;
} void cdq(int l,int r){
if(l == r) return ;
int mid = (l + r) >> ;
for(int i = l;i <= r;i ++){
if(q[i].t <= mid) add(q[i].y,q[i].kind);
else ans[q[i].id] += q[i].kind*(getsum(n) - getsum(q[i].y));
}
for(int i = l;i <= r;i ++)
if(q[i].t <= mid) add(q[i].y,-q[i].kind); for(int i = r;i >= l;i --){
if(q[i].t <= mid) add(q[i].y,q[i].kind);
else ans[q[i].id] += q[i].kind*getsum(q[i].y-);
}
for(int i = l;i <= r;i ++)
if(q[i].t <= mid) add(q[i].y,-q[i].kind); int L = l,R = mid+;
for(int i = l;i <= r;i ++){
if(q[i].t <= mid) t[L++] = q[i];
else t[R++] = q[i];
}
for(int i = l;i <= r;i ++) q[i] = t[i];
cdq(l,mid); cdq(mid+,r);
} int main()
{
scanf("%d%d",&n,&m);
for(int i = ;i <= n;i ++){
scanf("%d",&a[i]);
pos[a[i]] = i; q[++len] = node(++tim,i,a[i],,);
}
for(int i = ;i <= m;i ++){
scanf("%d",&x);
q[++len] = node(++tim,pos[x],x,-,i);
}
sort(q+,q++len);
cdq(,len);
for(int i = ;i <= m;i ++){
ans[i] += ans[i-];
printf("%lld\n",ans[i-]);
}
return ;
}
bzoj 3295 动态逆序对 (三维偏序,CDQ+树状数组)的更多相关文章
- BZOJ 3295 [CQOI2011]动态逆序对 (三维偏序CDQ+树状数组)
题目大意: 题面传送门 还是一道三维偏序题 每次操作都可以看成这样一个三元组 $<x,w,t>$ ,操作的位置,权值,修改时间 一开始的序列看成n次插入操作 我们先求出不删除时的逆序对总数 ...
- BZOJ 2141 排队 (三维偏序CDQ+树状数组)
题目大意:略 洛谷传送门 和 [CQOI2015]动态逆序对 这道题一样的思路 一开始的序列视为$n$次插入操作 把每次交换操作看成四次操作,删除$x$,删除$y$,加入$x$,加入$y$ 把每次操作 ...
- BZOJ 2716/2648 SJY摆棋子 (三维偏序CDQ+树状数组)
题目大意: 洛谷传送门 这明明是一道KD-Tree,CDQ分治是TLE的做法 化简式子,$|x1-x2|-|y1-y2|=(x1+y1)-(x2+y2)$ 而$CDQ$分治只能解决$x1 \leq x ...
- BZOJ 1176/2683 Mokia (三维偏序CDQ+树状数组)
题目大意: 洛谷传送门 三维偏序裸题.. 每次操作都看成一个三元组$<x,y,t>$,表示$x,y$坐标和操作时间$t $ 询问操作拆成$4$个容斥 接下来就是$CDQ$了,外层按t排序, ...
- BZOJ 3262 陌上花开 (三维偏序CDQ+树状数组)
题目大意: 题面传送门 三维偏序裸题 首先,把三元组关于$a_{i}$排序 然后开始$CDQ$分治,回溯后按$b_{i}$排序 现在要处理左侧对右侧的影响了,显然现在左侧三元组的$a_{i}$都小于等 ...
- 洛谷P3810-陌上开花(三维偏序, CDQ, 树状数组)
链接: https://www.luogu.org/problem/P3810#submit 题意: 一个元素三个属性, x, y, z, 给定求f(b) = {ax <= bx, ay < ...
- BZOJ 3295 动态逆序对 | CDQ分治
BZOJ 3295 动态逆序对 这道题和三维偏序很类似.某个元素加入后产生的贡献 = time更小.pos更小.val更大的元素个数 + time更小.pos更大.val更小的元素个数. 分别用类似C ...
- bzoj 3295 动态逆序对 CDQ分支
容易看出ans[i]=ans[i-1]-q[i],q[i]为删去第i个数减少的逆序对. 先用树状数组算出最开始的逆序对,预处理出每个数前边比它大的和后边比它小的,就求出了q[i]的初始值. 设b[i] ...
- 洛谷 P1908 逆序对 Label:归并排序||树状数组 不懂
题目描述 猫猫TOM和小老鼠JERRY最近又较量上了,但是毕竟都是成年人,他们已经不喜欢再玩那种你追我赶的游戏,现在他们喜欢玩统计.最近,TOM老猫查阅到一个人类称之为“逆序对”的东西,这东西是这样定 ...
随机推荐
- Oracle 在函数或存储过程中执行sql查询字符串并将结果值赋值给变量
请看黄色部分 --区县指标 THEN TVALUE_SQL := 'SELECT TO_CHAR(' || CUR_ROW.MAIN_FIELD || ') FROM ' || CUR_ROW.END ...
- Kubernetes-v1.12.0基于kubeadm部署
1.主机规划 #master节点(etcd/apiserver/scheduler/controller manager)master.example.cometh0: 192.168.0.135et ...
- QZEZ第一届“饭吉圆”杯程序设计竞赛
终于到了饭吉圆杯的开赛,这是EZ我参与的历史上第一场ACM赛制的题目然而没有罚时 不过题目很好,举办地也很成功,为法老点赞!!! 这次和翰爷,吴骏达 dalao,陈乐扬dalao组的队,因为我们有二个 ...
- [Oracle]TM lock (DML enqueue) 的相容性
[Oracle]TM lock (DML enqueue) 的相容性 RS(SS): 行共享 LMODE =2 RX(SX): 行独占 LMODE =3 S: 共享 ...
- .NET Standard库引用导致的FileNotFoundException探究
微软近几年推出.NET Standard,将.NET Framework,.NET Core,Xamarin等目标平台的api进行标准化和统一化,极大地方便了类库编写人员的工作.简单的说,类库编写人员 ...
- sqli-labs less 1-4
sqli-labs less 1-4 数字型注入 当输入的参数为整形时,如果存在注入漏洞,可以认为是数字型注入. 测试步骤: (1) 加单引号,URL:www.text.com/text.php?id ...
- 在Mac终端显示 Git 当前所在分支
1.进入你的home目录 cd ~ 2.编辑.bashrc文件 vi .bashrc 3.将下面的代码加入到文件的最后处 function git_branch { branch="`git ...
- D. Fun with Integers
链接 [http://codeforces.com/contest/1062/problem/D] 题意 给你n,让你从2到n这个区间找任意两个数,使得一个数是另一个的因子,绝对值小的可以变为绝对值大 ...
- JSONObject使用方法详解
1.JSONObject介绍 JSONObject-lib包是一个beans,collections,maps,java arrays和xml和JSON互相转换的包. 2.下载jar包 http:// ...
- phpcms全站搜索
这篇博客已经移至http://www.cnblogs.com/nuanai/p/8028562.html中~~~~~~