Given N rational numbers in the form "numerator/denominator", you are supposed to calculate their sum.

Input Specification:

Each input file contains one test case. Each case starts with a positive integer N (<=100), followed in the next line N rational numbers "a1/b1 a2/b2 ..." where all the numerators and denominators are in the range of "long int". If there is a negative number, then the sign must appear in front of the numerator.

Output Specification:

For each test case, output the sum in the simplest form "integer numerator/denominator" where "integer" is the integer part of the sum, "numerator" < "denominator", and the numerator and the denominator have no common factor. You must output only the fractional part if the integer part is 0.

Sample Input 1:

5
2/5 4/15 1/30 -2/60 8/3

Sample Output 1:

3 1/3

Sample Input 2:

2
4/3 2/3

Sample Output 2:

2

Sample Input 3:

3
1/3 -1/6 1/8

Sample Output 3:

7/24
 #include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
typedef struct{
long long up, down;
}fra;
long long gcd(long long a, long long b){
a = abs(a);
b = abs(b);
if(b == )
return a;
else return gcd(b, a % b);
}
fra cacul(fra a, fra b){
fra temp;
temp.down = a.down * b.down;
temp.up = a.down * b.up + b.down * a.up;
long long fact = gcd(temp.up, temp.down);
temp.down = temp.down / fact;
temp.up = temp.up / fact;
return temp;
}
int main(){
int N;
fra re = {,}, temp = {, };
scanf("%d", &N);
for(int i = ; i < N; i++){
scanf("%lld/%lld", &temp.up, &temp.down);
re = cacul(re, temp);
}
if(re.up == ){
printf("");
}else if(abs(re.up) == abs(re.down)){
printf("%lld", re.up / re.down);
}else if(abs(re.up) > abs(re.down)){
if(re.up % re.down == )
printf("%d", re.up / re.down);
else
printf("%lld %lld/%lld", re.up / re.down, re.up % re.down, re.down);
}else{
printf("%lld/%lld", re.up, re.down);
}
cin >> N;
return ;
}

总结:

1、分数运算化简:化简时分子分母同除最大公因数。 输出时考虑:分子为0时直接输出0;分子>=分母时(用绝对值比较,是>=而非>),可以整除则输出整数,否则输出代分数(4/1直接输出4);

2、gcd函数:

int gcd(int a, int b){ 
if(b == )
return a;
else return gcd(b, a % b);
}

A1081. Rational Sum的更多相关文章

  1. PAT甲级——A1081 Rational Sum

    Given N rational numbers in the form numerator/denominator, you are supposed to calculate their sum. ...

  2. PAT_A1081#Rational Sum

    Source: PAT A1081 Rational Sum (20 分) Description: Given N rational numbers in the form numerator/de ...

  3. PAT1081:Rational Sum

    1081. Rational Sum (20) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue Given N ...

  4. PAT 1081 Rational Sum

    1081 Rational Sum (20 分)   Given N rational numbers in the form numerator/denominator, you are suppo ...

  5. PAT Rational Sum

    Rational Sum (20) 时间限制 1000 ms 内存限制 65536 KB 代码长度限制 100 KB 判断程序 Standard (来自 小小) 题目描述 Given N ration ...

  6. PAT 1081 Rational Sum[分子求和][比较]

    1081 Rational Sum (20 分) Given N rational numbers in the form numerator/denominator, you are suppose ...

  7. pat1081. Rational Sum (20)

    1081. Rational Sum (20) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue Given N ...

  8. 1081. Rational Sum (20) -最大公约数

    题目如下: Given N rational numbers in the form "numerator/denominator", you are supposed to ca ...

  9. Twitter OA prepare: Rational Sum

    In mathematics, a rational number is any number that can be expressed in the form of a fraction p/q ...

随机推荐

  1. github个人心得

    github真难全是英语真费劲 以后要好好学习英语 https://github.com/huangjingyi/test

  2. Markdown页内跳转实现方法

    目录 Markdown页内跳转实现方法 HTML锚点跳转 生成目录 Markdown页内跳转实现方法 [时间:2017-02] [状态:Open] [关键词:markdown,标记语言,页内跳转,ht ...

  3. iOS中单例创建时不严格造成的问题和解决方法

    这次项目中遇到了一个单例创建不严格造成了的问题.简单说来就是在有的地方使用了alloc创建了多个实例,当然如果严格按照接口的方法调用是不会有问题的,但是如果项目碰到有不太熟悉的人使用时在处理时就会出现 ...

  4. SpringMvc配置扫包之后,访问路径404问题解决

    场景: 1. 配置了Spring和SpringMvc, Spring管理非Controller类的Bean, SpringMvc管理涉及的Controller类 2. web.xml已经配置了Spri ...

  5. CI框架--数据库Query_Builder中的方法

    下面是DB_Query_Builder.php中,各个方法的声明: 选择字段(select) public function select($select = '*', $escape = NULL) ...

  6. 【转】Linux tail 命令详解

    Linux tail 命令详解 http://www.2cto.com/os/201111/110143.html

  7. node的router路由。

    使用router可以实现一个小型的express. router继承了大部分的app = express()的方法. 使用router可以工程化管理项目.router使用以后app只能在最开始去存在. ...

  8. win8和win7下解决php5.3和5.4、5.5等不能加载php_curl.dll的终极解决办法 收藏

    win8和win7下解决php5.3和5.4.5.5等不能加载php_curl.dll的终极解决办法 收藏2015年01月11日 最近分别在WIN7和Windows8 上分别安装php 高版本!都遇到 ...

  9. php 历史版本下载地址

    PHP 3.* 版本到 7.* 版本下载地址 http://www.php.net/releases/

  10. Centos7搭建LAMP+Typecho博客

    一.安装Apache的httpd服务 yum install httpd # 安装httpd服务 systemctl start httpd # 启动httpd服务 systemctl status ...