若$a\leq 1000$,则整个$f$数列会形成$O(a)$段公差为$a$的等差数列。

否则$a^{-1}\leq 1000$,设$ai+b=f(i)$,那么有$i=a^{-1}f(i)-ba^{-1}$。

交换$i$和$f(i)$的地位,这将形成$O(a^{-1})$段公差为$a^{-1}$的等差数列。

暴力枚举两个等差数列,然后$O(1)$计算逆序对个数即可。

时间复杂度$O(\min(a,a^{-1})^2)$。

#include<cstdio>
typedef long long ll;
int n,m,lim,a,b,i,j,cnt;ll ans;
struct E{int s,l;}e[3000];
int pow(int a,int b){int t=1;for(;b;b>>=1,a=1LL*a*a%m)if(b&1)t=1LL*t*a%m;return t;}
void add(int s,int l){
if(lim){
if(s>lim)return;
if(!s){
s+=a,l--;
if(s>lim||l<0)return;
}
int t=(lim-s)/a;
if(l>t)l=t;
}
e[++cnt].s=s;e[cnt].l=l;
}
inline ll cal(const E&A,const E&B){
int L=(B.s-A.s)/a;
if(L<0)L=0;
while(1LL*a*L+A.s<=B.s)L++;
if(L>A.l)return 0;
int F=(a*L+A.s-B.s)/a;
while(1LL*a*(F+1)+B.s<a*L+A.s)F++;
if(F>B.l)F=B.l;
F++;
int R=(a*B.l+B.s-A.s)/a;
if(R<0)R=0;
while(1LL*a*R+A.s<=a*B.l+B.s)R++;
if(R>A.l)R=A.l;
int G=(a*R+A.s-B.s)/a;
while(1LL*a*(G+1)+B.s<a*R+A.s)G++;
if(G>B.l)G=B.l;
G++;
return 1LL*(F+G)*(R-L+1)/2+1LL*G*(A.l-R);
}
int main(){
scanf("%d%d%d%d",&n,&m,&a,&b);
if(a>1000)a=pow(a,m-2),b=1LL*(m-b)*a%m,lim=n,n=m-1;
if(lim)add(b,0);
while(n){
b=(b+a)%m;
i=(m-b-1)/a;
while(1LL*a*(i+1)+b<m)i++;
if(i>=n)i=n-1;
add(b,i);
n-=i+1;
b=(1LL*a*i+b)%m;
}
for(i=1;i<=cnt;i++)for(j=i+1;j<=cnt;j++)ans+=cal(e[i],e[j]);
return printf("%lld",ans),0;
}

  

BZOJ3565 : [SHOI2014]超能粒子炮的更多相关文章

  1. 【BZOJ-4591】超能粒子炮·改 数论 + 组合数 + Lucas定理

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 95  Solved: 33[Submit][Statu ...

  2. Bzoj 4591: [Shoi2015]超能粒子炮·改 数论,Lucas定理,排列组合

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 178  Solved: 70[Submit][Stat ...

  3. bzoj 4591: [Shoi2015]超能粒子炮·改 [lucas定理]

    4591: [Shoi2015]超能粒子炮·改 题意:多组询问,求 \[ S(n, k) = \sum_{i=0}^n \binom{n}{i} \mod 2333,\ k \le n \le 10^ ...

  4. 【BZOJ4591】[SHOI2015]超能粒子炮·改 (卢卡斯定理)

    [BZOJ4591][SHOI2015]超能粒子炮·改 (卢卡斯定理) 题面 BZOJ 洛谷 题解 感天动地!终于不是拓展卢卡斯了!我看到了一个模数,它是质数!!! 看着这个东西就感觉可以递归处理. ...

  5. 洛谷 P4345 [SHOI2015]超能粒子炮·改 解题报告

    P4345 [SHOI2015]超能粒子炮·改 题意 求\(\sum_{i=0}^k\binom{n}{i}\),\(T\)组数据 范围 \(T\le 10^5,n,j\le 10^{18}\) 设\ ...

  6. loj#2038. 「SHOI2015」超能粒子炮・改

    题目链接 loj#2038. 「SHOI2015」超能粒子炮・改 题解 卢卡斯定理 之后对于%p分类 剩下的是个子问题递归 n,k小于p的S可以预处理,C可以卢卡斯算 代码 #include<c ...

  7. bzoj 4591 超能粒子炮·改 - Lucas

    Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...

  8. BZOJ 4591 【SHOI2015】 超能粒子炮·改

    题目链接:超能粒子炮·改 这道题的大体思路就是用\(lucas\)定理,然后合并同类项,就可以得到一个可以递归算的式子了. 我们用\(S(n,k)\)表示答案,\(p\)表示模数(\(2333\)是一 ...

  9. bzoj4591 / P4345 [SHOI2015]超能粒子炮·改

    P4345 [SHOI2015]超能粒子炮·改 题意:求$\sum_{i=1}^{k}C(n,i)\%(P=2333)$ 肯定要先拆开,不然怎么做呢(大雾) 把$C(n,i)$用$lucas$分解一下 ...

随机推荐

  1. 饮冰三年-人工智能-Python-17Python基础之模块与包

    一.模块(modue) 简单理解一个.py文件就称之为一个模块. 1.1 模块种类: python标准库 第三方模板 应用程序自定义模块(尽量不要与内置函数重名) 1.2 模块导入方法 # impor ...

  2. vue 引入Element组件

    1.打开cmd,在当前目录中运行: npm i element-ui -S 2.src/main.js(红色的) import Vue from 'vue' import App from './Ap ...

  3. [转] js实现对图片的二进制流md5计算

    //计算图片md5 function img_MD5(img_path,callback) { plus.io.resolveLocalFileSystemURL(img_path, function ...

  4. Oracle impdp的ignore及 fromuser / touser 功能

    作者:eygle |English [转载时请标明出处和作者信息]|[恩墨学院 OCM培训传DBA成功之道]链接:http://www.eygle.com/archives/2009/09/oracl ...

  5. crunch创建自己的密码字典文件

    http://www.2cto.com/article/201608/542026.html

  6. BZOJ3451 Tyvj1953 Normal 点分治 多项式 FFT

    原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ3451.html 题目传送门 - BZOJ3451 题意 给定一棵有 $n$ 个节点的树,在树上随机点分 ...

  7. Codeforces 980F Cactus to Tree 仙人掌 Tarjan 树形dp 单调队列

    原文链接https://www.cnblogs.com/zhouzhendong/p/CF980F.html 题目传送门 - CF980F 题意 给定一个 $n$ 个节点 $m$ 条长为 $1$ 的边 ...

  8. IDEA控制台问题:java lang OutOfMemoryError:PermGen space

    PermGen space的全称是Permanent Generation space,是指内存的永久保存区域. OutOfMemoryError: PermGen space从表面上看就是内存溢出, ...

  9. 006 使用SpringMVC开发restful API四--用户信息的修复与删除,重在注解的定义

    一:任务 1.任务 常用的验证注解 自定义返回消息 自定义校验注解 二:Hibernate Validator 1.常见的校验注解 2.程序 测试类 /** * @throws Exception * ...

  10. Spark中map与flatMap

    map将函数作用到数据集的每一个元素上,生成一个新的分布式的数据集(RDD)返回 map函数的源码: def map(self, f, preservesPartitioning=False): &q ...