给出n个命题,m个推导,问最少添加多少条推导,能够使全部命题都能等价(两两都能互推)

既给出有向图,最少加多少边,使得原图变成强连通。

首先强连通缩点,对于新图,每一个点都至少要有一条出去的边和一条进来的边(这样才干保证它能到随意点和随意点都能到它)

所以求出新图中入度为0的个数,和出度为0的个数,加入的边就是从出度为0的指向入度为0的。这样还会有一点剩余,剩余的就乱连即可了。

所以仅仅要求出2者的最大值就OK。

#include <iostream>
#include<cstring>
#include<cstdio>
#include<string>
#include<algorithm>
using namespace std;
#define MAXN 30005
#define MAXM 200005
struct node
{
int to,next;
}edge[MAXM];
int head[MAXN],en;
int low[MAXN],dfn[MAXN],stack[MAXN],top,set[MAXN],col,num;
bool vis[MAXN],instack[MAXN];
int in[MAXN],out[MAXN];
int n;
int m;
void addedge(int a,int b)
{
edge[en].to=b;
edge[en].next=head[a];
head[a]=en++;
}
void tarjan(int u)
{
vis[u]=1;
dfn[u]=low[u]=++num;
instack[u]=true;
stack[++top]=u;
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].to;
if(!vis[v])
{
tarjan(v);
low[u]=min(low[u],low[v]);
}
else
if(instack[v])
low[u]=min(dfn[v],low[u]);
}
if(dfn[u]==low[u])
{
int j;
col++;
do
{
j=stack[top--];
instack[j]=false;
set[j]=col;
}
while (j!=u);
}
}
void init()
{
en=top=col=num=0;
memset(head,-1,sizeof(head));
memset(instack,0,sizeof(instack));
memset(vis,0,sizeof(vis));
memset(set,-1,sizeof(set));
memset(in,0,sizeof(in));
memset(out,0,sizeof(out));
}
int main()
{
int a,b;
int cas;
scanf("%d",&cas);
while(cas--)
{
scanf("%d%d",&n,&m);
init();
for(int i=1;i<=m;i++)
{
scanf("%d%d",&a,&b);
addedge(a,b);
}
for(int i=1;i<=n;i++)
if(!vis[i])tarjan(i);
if(col<=1) {puts("0");continue;}
int ans=0;
for(int i=1;i<=n;i++)
for(int j=head[i];~j;j=edge[j].next)
{
int to=edge[j].to;
if(set[to]!=set[i])
{
in[set[to]]++;
out[set[i]]++;
}
}
int t1=0,t2=0;
for(int i=1;i<=col;i++)
{
if(!in[i]) t1++;
if(!out[i]) t2++;
}
printf("%d\n",max(t1,t2));
}
return 0;
}
/*
3 3
1 2
2 1
1 2
*/

hdu 2767 Proving Equivalences 强连通缩点的更多相关文章

  1. HDU 2767 Proving Equivalences(强连通 Tarjan+缩点)

    Consider the following exercise, found in a generic linear algebra textbook. Let A be an n × n matri ...

  2. HDU 2767:Proving Equivalences(强连通)

    题意: 一个有向图,问最少加几条边,能让它强连通 方法: 1:tarjan 缩点 2:采用如下构造法: 缩点后的图找到所有头结点和尾结点,那么,可以这么构造:把所有的尾结点连一条边到头结点,就必然可以 ...

  3. HDU 2767 Proving Equivalences (强联通)

    pid=2767">http://acm.hdu.edu.cn/showproblem.php?pid=2767 Proving Equivalences Time Limit: 40 ...

  4. hdu 2767 Proving Equivalences

    Proving Equivalences 题意:输入一个有向图(强连通图就是定义在有向图上的),有n(1 ≤ n ≤ 20000)个节点和m(0 ≤ m ≤ 50000)条有向边:问添加几条边可使图变 ...

  5. HDU 2767 Proving Equivalences(至少增加多少条边使得有向图变成强连通图)

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  6. HDU 2767 Proving Equivalences (Tarjan)

    Proving Equivalences Time Limit : 4000/2000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other ...

  7. hdu 2767 Proving Equivalences(tarjan缩点)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2767 题意:问最少加多少边可以让所有点都相互连通. 题解:如果强连通分量就1个直接输出0,否者输出入度 ...

  8. hdu - 2667 Proving Equivalences(强连通)

    http://acm.hdu.edu.cn/showproblem.php?pid=2767 求至少添加多少条边才能变成强连通分量.统计入度为0的点和出度为0的点,取最大值即可. #include & ...

  9. UvaLive 4287 Proving Equivalences 强连通缩点

    原题链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...

随机推荐

  1. 使用jQuery实现tag便签去重效果

    话不多说直接看代码 jsp页面的核心代码 <head> <script type="text/javascript" src="js/jQuery.js ...

  2. 每天进步一点点——Linux磁盘管理LVM与RAID

    转载请注明出处:http://blog.csdn.net/cywosp/article/details/38965799 1. 传统磁盘管理问题 当分区大小不够用时无法扩展其大小,仅仅能通过加入硬盘. ...

  3. Notifications(通知)

    通知 通知是能在应用的普通用户界面外显示给用户的一种消息. 当你告诉系统公布一条通知时,它首先在通知栏中表现为一枚图标. 用户打开通知抽屉后就能查看通知的细节了. 通知栏和通知抽屉都是由系统控制的区域 ...

  4. Bootstrap之表格

    基本实例 为随意<table>标签加入.table类能够为其赋予主要的样式-少量的内补(padding)和水平方向的分隔线. <table class="table&quo ...

  5. Learning Cocos2d-x for WP8(1)——创建首个项目

    原文:Learning Cocos2d-x for WP8(1)--创建首个项目 Cocos2d-x for WP8开发语言是C++,系列文章将参考兄弟篇Learning Cocos2d-x for ...

  6. Codefirst

    新建控控制台程序 nuget  输入Install-Package EntityFramework  回车: Program.cs只 添加 using ConsoleApplication18.Mig ...

  7. codeforces 112APetya and Strings(字符串水题)

    A. Petya and Strings 点击打开题目 time limit per test 2 seconds memory limit per test 256 megabytes input ...

  8. 完美去除WPF按钮的边框

    主页面背影图片, 添加5个功能按钮,并设置按钮的Background和BorderBrush为Transparent,好像没有问题,运行效果 不仅有一个发光的边框,而且当鼠标经过时,按钮就不在透明, ...

  9. java 解析 json 遍历未知key

    1.—————————————————————————————————————————————————————————————— import net.sf.json.JSONObject; Stri ...

  10. zabbix 监控特定进程

    因为一些server上跑着一些重要程序,须要对它们进行监控,公司用的是zabbix监控,之前都是在zabbix中加入自己定义脚本对特定程序进行监控,近期看了zabbix的官方文档,发现原来强大的zab ...