牛顿迭代法(Newton's Method)

简介

牛顿迭代法(简称牛顿法)由英国著名的数学家牛顿爵士最早提出。但是,这一方法在牛顿生前并未公开发表。

牛顿法的作用是使用迭代的方法来求解函数方程的根。简单地说,牛顿法就是不断求取切线的过程。

对于形如f(x)=0的方程,首先任意估算一个解x0,再把该估计值代入原方程中。由于一般不会正好选择到正确的解,所以有f(x)=a。这时计算函数在x0处的斜率,和这条斜率与x轴的交点x1。

f(x)=0中精确解的意义是,当取得解的时候,函数值为零(即f(x)的精确解是函数的零点)。因此,x1比x0更加接近精确的解。只要不断以此方法更新x,就可以取得无限接近的精确的解。

但是,有可能会遇到牛顿迭代法无法收敛的情况。比如函数有多个零点,或者函数不连续的时候。

牛顿法举例

下面介绍使用牛顿迭代法求方根的例子。牛顿迭代法是已知的实现求方根最快的方法之一,只需要迭代几次后就能得到相当精确的结果。

首先设x的m次方根为a。

下面程序使用牛顿法求解平方根。

 const float EPS = 0.00001;
int sqrt(double x) {
if(x == ) return ;
double result = x; /*Use double to avoid possible overflow*/
double lastValue;
do{
lastValue = result;
result = result / 2.0f + x / 2.0f / result;
}while(abs(result - lastValue) > EPS);
return (double)result;
}

更快的方法

文献2提到了比上述程序更快的求解平方根的非典型牛顿迭代法。介绍如下。

1999年12月,美国id Software公司发布了名为“雷神之锤III”的电子游戏。它是第一个支持软件加速的游戏,取得了极大成功。(由于影响力过大,文化部于2004年将它列入了非法游戏名单)

雷神之锤III并不是id Software公司的第一次成功。早在1993年开始,这家公司就以“毁灭战士”系列游戏名闻天下。1995年,“毁灭战士”的安装数超过了当年微软的windows 95。据传比尔盖茨才曾经考虑买下id software。(id software公司后来被推出过“上古卷轴”系列的Bethesda公司买下)

id Software所取得的成功很大程度上要归功于它的创始人约翰·卡马克。马克尔也是一个著名的程序员,他是id Software游戏引擎的主要负责人。 回到刚才提到的雷神之锤,马克尔是开源软件的积极推动者,他于2005年公布了雷神之锤III的源代码。至此人们得以通过研究这款游戏引擎的源文件来查看它成功的秘密。

在其中一个名字为q_math.c的文件中发现了如下代码段。

 float Q_rsqrt( float number ) {
long i; float x2, y; const float threehalfs = 1.5F;
x2 = number * 0.5F;
y = number;
i = * ( long * ) &y; // evil floating point bit level hacking
i = 0x5f3759df - ( i >> ); // what the fuck?
y = * ( float * ) &i;
y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
// y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
#ifndef Q3_VM #
ifdef __linux__ assert( !isnan(y) ); // bk010122 - FPE?
#endif
#endif return y;
}

这段代码的作用就是求number的平方根,并且返回它的倒数。

经过测试,它的效率比上述牛顿法程序要快几十倍。也比c++标准库的sqrt()函数要快好几倍。此段代码有一个奇怪的句子:

i = 0x5f3759df - ( i >> 1 ); // what the fuck?

这句话的注释是“what the fuck?”,翻译过来就是“我靠?”

任何受过程序训练的人看到这句大概都会在想,这句话到底在搞什么鸟?

之所以会出现这种奇怪的注释,要么是此段程序的作者(可能是马克尔)根本不知道该如何解释清楚,或者是维护这段程序的程序员完全看不懂这句话,所以有点儿抓毛。而实际上,它的作用(再加上y
= y * ( threehalfs - ( x2 * y * y ) )这句牛顿迭代)就是求平方根。

至于是为什么,本博主也不知道。

以雷神之锤III程序为蓝本可以写出比sqrt()更强大的求平方根函数:

 int sqrt(float x) {
if(x == ) return ;
float result = x;
float xhalf = 0.5f*result;
int i = *(int*)&result;
i = 0x5f375a86- (i>>); // what the fuck?
result = *(float*)&i;
result = result*(1.5f-xhalf*result*result); // Newton step, repeating increases accuracy
result = result*(1.5f-xhalf*result*result);
return 1.0f/result;
}

参考文献:

1.wikipedia.org

2.http://www.2cto.com/kf/201206/137256.html

牛顿迭代法(Newton's Method)的更多相关文章

  1. 牛顿迭代法(Newton's Method)

    牛顿迭代法(Newton's Method) 简介 牛顿迭代法(简称牛顿法)由英国著名的数学家牛顿爵士最早提出.牛顿法的作用是使用迭代的方法来求解函数方程的根.简单地说,牛顿法就是不断求取切线的过程. ...

  2. 牛顿迭代法(Newton's Method)

    牛顿迭代法(简称牛顿法)由英国著名的数学家牛顿爵士最早提出.可是,这 一方法在牛顿生前并未公开发表(讨厌的数学家们还是鼓捣出来了) 牛顿法的作用是使用迭代的方法来求解函数方程的根. 简单地说,牛顿法就 ...

  3. 牛顿迭代法(Newton's method)

    关键词:牛顿法.牛顿迭代法.牛顿切线法.牛顿-拉弗森方法 参考:牛顿迭代法-百度百科.牛顿切线法-百度文库数学学院.牛顿切线法数值分析.非线性方程(组)的数值解法.Latex入门 https://bl ...

  4. 牛顿方法(Newton's Method)

    在讲义<线性回归.梯度下降>和<逻辑回归>中我们提到可以用梯度下降或梯度上升的方式求解θ.在本文中将讲解另一种求解θ的方法:牛顿方法(Newton's method). 牛顿方 ...

  5. Atitit 迭代法  “二分法”和“牛顿迭代法 attilax总结

    Atitit 迭代法  "二分法"和"牛顿迭代法 attilax总结 1.1. ."二分法"和"牛顿迭代法"属于近似迭代法1 1. ...

  6. Newton's Method

    在求最优解时,前面很多地方都用梯度下降(Gradient Descent)的方法,但由于最优步长很难确定,可能会出现总是在最优解附近徘徊的情况,致使最优解的搜索过程很缓慢.牛顿法(Newton's M ...

  7. 牛顿法(Newton's Method)

    Newton's Method 在求最优解时,前面很多地方都用梯度下降(Gradient Descent)的方法,但由于最优步长很难确定,可能会出现总是在最优解附近徘徊的情况,致使最优解的搜索过程很缓 ...

  8. Java实现牛顿迭代法求解平方根、立方根

    一.简介 牛顿迭代法(Newton's method)又称为牛顿-拉夫逊(拉弗森)方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法. ...

  9. 【cs229-Lecture4】Newton’s method

    之前我们在求Logistic回归时,用的是梯度上升算法,也就是要使得似然函数最大化,利用梯度上升算法,不断的迭代.这节课引出牛顿方法,它的作用和梯度上升算法的一样的,不同的是牛顿方法所需的迭代次数更少 ...

随机推荐

  1. quick-cocos2d-x添加到Pomelo的支持

    https://github.com/luoxinliang/pomelo_quick_x/tree/master/pomelo_quick_x

  2. doubango(2)--底层协议栈结构分析

    tsip_stack_handle_t 实例 1.        tsip_stack_handle_t的创建 在底层,真正运转的协议栈结构式tsip_stack_handle_t的一个实例,它的创建 ...

  3. 《Linux多线程服务端编程》笔记——多线程服务器的适用场合

    如果要在一台多核机器上提供一种服务或执行一个任务,可用的模式有 运行一个单线程的进程 运行一个多线程的进程 运行多个单线程的进程 运行多个多线程的进程 这些模式之间的比较已经是老生常谈,简单地总结 模 ...

  4. Canvas 阴影效果

    shadow <!DOCTYPE html> <html lang="en"> <head> <meta charset="UT ...

  5. SSM(Maven集成)

    ssm全称:Spring+SpringMVC+Mybatis ssm简介: 1.Spring Spring是一个开源框架,Spring是于2003 年兴起的一个轻量级的Java 开发框架,由Rod J ...

  6. 笔记:Ubuntu 上的Testlink 部署

    1.安装apache2 sudo apt-get install apache2 2. sudo /etc/init.d/apache2 restart 测试: Http:\localhost or ...

  7. Import Statements 导入语句

    Syntax of an Import Statement 导入语句的语法 An import statement allows clients to tell the engine which mo ...

  8. 使用rsync+inotify-tools+ssh实现文件实时同步

    假设某服务器架构中有两台web服务器(IP为192.168.1.252和192.168.1.254),一台代码更新发布服务器(IP为192.168.1.251),需要同步的目录是/data/www/, ...

  9. php连接 mysql 数据库

    php 连接数据库 一般是用面向对象的方法,需要先创建一个对象,即造一个连接对象,然后再写sql语句,(增改查删),最后执行sql语句 其中在创建连接对象时 我们用到的是MySQLI  是不区分大小写 ...

  10. Mybatis实战之自定义TypeHandler处理枚举

    在Mybatis中,处理枚举类的TypeHandler有两个: EnumTypeHandler: 用于保存枚举名 EnumOrdinalTypeHandler: 用于保存枚举的序号. 在实际项目中,以 ...